82 resultados para glass-ionomer cement
Resumo:
Structural repairs of bridges piers and abutments require patching concrete or mortar be placed at various thickness. Whether concrete or mortar is use depends upon the depth of the patch to be made. In some instances, the use of a liquid bonding agent has been specified in the mixes as well as in a grout scrubbed onto the surface to be patched prior to the mix placement. Most of the bonding agents presently approved by the Iowa D.O.T. are polyvinyl acetate (PVA) or some type of latex. In a general discussion with a consultant about various types of bridge repair materials and processes, the subject of bonding agents was discussed at some length. It was the opinion of the consultant that the usage of polyvinyl acetates should be discontinued because of possible deterioration of this material with time. Some of these materials apparently re-emulsify in a high - moisture environment causing serious patch deterioration. As a result of this information, a study was initiated to determine the durability of these materials.
Resumo:
Fly ash was used in this evaluation study to replace 30, 50 and 70 percent of the 400 1bs. of cement currently used in each cu. yd. of portland cement econocrete base paving mix. Two Class "c" ashes and one Class "F" ash from Iowa approved sources were examined in each mix. When Class "c" ashes were used, they were substituted on the basis of 1.0 pound for each pound of cement removed. When Class "F" ash was used, it was substituted on the basis of 1.25 pounds of ash for each pound of cement removed. Compressive strengths with and without fly ash were determined at 7, 28 and 56 days of age. In most cases, strengths were adequate. The freeze/thaw durability of the econocrete mixes studied was not adversely affected by the presence of fly ash. The tests along with erodibility and absorption tests have demonstrated the feasibility of producing econocrete with satisfactory mechanical properties even when relatively low quality and/or locally available aggregate is being used at no sacrifice to strength and/or durability.
Resumo:
This document summarizes the discussions and findings of a workshop held in Arlington, VA, on September 5, 2007. The objective of the meeting was to provide national direction on areas of priority interest and collaboration between industry and public agencies specifically for applications of nanotechnology to cement and concrete.
Resumo:
With the use of supplementary cementing materials (SCMs) in concrete mixtures, salt scaling tests such as ASTM C672 have been found to be overly aggressive and do correlate well with field scaling performance. The reasons for this are thought to be because at high replacement levels, SCM mixtures can take longer to set and to develop their properties: neither of these factors is taken into account in the standard laboratory finishing and curing procedures. As a result, these variables were studied as well as a modified scaling test, based on the Quebec BNQ scaling test that had shown promise in other research. The experimental research focused on the evaluation of three scaling resistance tests, including the ASTM C672 test with normal curing as well as an accelerated curing regime used by VDOT for ASTM C1202 rapid chloride permeability tests and now included as an option in ASTM C1202. As well, several variations on the proposed draft ASTM WK9367 deicer scaling resistance test, based on the Quebec Ministry of Transportation BNQ test method, were evaluated for concretes containing varying amounts of slag cement. A total of 16 concrete mixtures were studied using both high alkali cement and low alkali cement, Grade 100 slag and Grade 120 slag with 0, 20, 35 and 50 percent slag replacement by mass of total cementing materials. Vinsol resin was used as the primary air entrainer and Micro Air® was used in two replicate mixes for comparison. Based on the results of this study, a draft alternative test method to ASTM C762 is proposed.
Resumo:
Effects of polyolefins, neoprene, styrene-butadiene-styrene (SBS) block copolymers, styrene-butadiene rubber (SBR) latex, and hydrated lime on two asphalt cements were evaluated. Physical and chemical tests were performed on a total of 16 binder blends. Asphalt concrete mixes were prepared and tested with these modified binders and two aggregates (crushed limestone and gravel), each at three asphalt content levels. Properties evaluated on the modified binders (original and thin-film oven aged) included: viscosity at 25 deg C, 60 deg C and 135 deg C with capillary tube and cone-plate viscometer, penetration at 5 deg C and 25 deg C, softening point, force ductility, and elastic recovery at 10 deg C, dropping ball test, tensile strength, and toughness and tenacity tests at 25 deg C. From these the penetration index, the viscosity-temperature susceptibility, the penetration-viscosity number, the critical low-temperature, long loading-time stiffness, and the cracking temperature were calculated. In addition, the binders were studied with x-ray diffraction, reflected fluorescence microscopy, and high-performance liquid chromatography techniques. Engineering properties evaluated on the 72 asphalt concrete mixes containing additives included: Marshall stability and flow, Marshall stiffness, voids properties, resilient modulus, indirect tensile strength, permanent deformation (creep), and effects of moisture by vacuum-saturation and Lottman treatments. Pavement sections of varied asphalt concrete thicknesses and containing different additives were compared to control mixes in terms of structural responses and pavement lives for different subgrades. Although all of the additives tested improved at least one aspect of the binder/mixture properties, no additive was found to improve all the relevant binder/mixture properties at the same time. On the basis of overall considerations, the optimum beneficial effects can be expected when the additives are used in conjunction with softer grade asphalts.
Resumo:
Improving the aggregate gradation for a portland cement concrete mix may result in higher compressive strengths. With an improved gradation, the cement factor may be reduced to achieve a more economical concrete mix since cement is the most expensive component in a Portland cement concrete mix. This project located on I-80 westbound in Scott County, Iowa examined three different mixes. 1. Standard Class C mix with project aggregates. 2. Standard Class C mix with an improved aggregate gradation. 3. Standard Class C mix with an improved aggregate gradation and 10% cementitious reduction.
Resumo:
A double mat of reinforcement steel consisting of No. 5 bars was placed in the longitudinal and transverse directions in a 26' wide, 10" thick pavement. The bars were placed on 12" centers with 2" of cover from the top and bottom surfaces. The special reinforcement is to provide additional strength in the pavement over an area of old coal mine tunnels. Auxiliary and standard paver vibrators were used to consolidate the concrete. There was concern that over-vibration could be occurring in some areas and also that a lack of consolidation may be occurring under the steel bars in some areas. A core evaluation study of the pavement was developed. The results showed that the consolidation and the air contents were satisfactory. Additional paving with reinforcement in the same area should use the same or similar method and amount of vibration as was used in the area evaluated in this study.
Resumo:
Experiments with early entry light sawing of Portland cement concrete (PCC) contraction joints began in Iowa in 1989. Since that time, changes in early sawing equipment have occurred as well as changes in specifications for sawing. The option to use early sawing for transverse contraction joints was specified in 1992. A problem happening occasionally with early sawing was the break out of some of the concrete around the end of the joint as the saw blade approached the edge of the slab. To prevent this, it was proposed that the sawing would terminate approximately 1/2" to 3/4" before the edge of the slab, creating a "short joint". This procedure would also leave a concrete "dam" to prevent the run-out and waste of the hot liquid joint sealant onto the shoulder. It would also eliminate the need for the labor and material for applying a duct tape dam at the open ends of each sawed joint to stop hot liquid sealant run-out Agreements were made with the contractor to apply the "short joint" technique for 1 day of paving. The evaluation and results are compared with an adjoining control section. The research found no negative aspects from sawing the "short joint". Three specific findings were noted. They are the following: 1) No joint end "blow-out" spalls of concrete occurred. 2) The need for the duct tape dam to stop liquid sealant overflow was eliminated. 3) Joint end corner spalls appear to be caused mainly by construction shouldering operations equipment. The "short joint" sawing technique can be routinely applied to early entry sawed transverse contraction joints with expectations of only positive results.
Resumo:
A study was made of the detrimental effects of trace amounts of calcium sulfate (occurring naturally in halite deposits used for deicing) on portland cement concrete pavements. It was found that sulfate introduced as gypsum with sodium chloride in deicing brines can have detrimental effects on portland cement mortar. Concentrations of sulfate as low as 0.5% of the solute rendered the brine destructive. Conditions of brine application were critical to specimen durability. The mechanisms of deterioration were found to be due to pore filling resulting from compound formation and deposition. A field evaluation of deteriorating joints suggests that the sulfate phenomena demonstrated in the laboratory also operates in the field. A preliminary evaluation was made of remedies: limits on sulfates, fly ash admixtures, treatment of existing pavement, and salt treatments. This report gives details of the research objectives, experimental design, field testing, and possible solutions. Recommendations for further study are presented.
Resumo:
This demonstration project consisted of three adjacent highway resurfacing projects using asphalt cement concrete removed from an Interstate highway which had become severely rutted. The salvaged asphaltic concrete was later crushed and hauled to a plant site where it was combined with virgin materials to resurface the three projects. Only two of the projects were used for performance evaluation as the third project was in an interchange area including ramps and was otherwise too short. It was concluded that recycling was cost effective and a high quality surface can be constructed using recycled asphalt cement concrete.
Resumo:
The objective of this research was to determine of the use of High Range Water Reducers (HRWR) (resulting in a lower water content ratio) with a D-cracking susceptible crushed limestone coarse aggregate would yield significant improvement in the durability.
Resumo:
The primary objectives of this research project were: 1. Determine and recommend solutions for problems relating to shipping, storing and batching of fly ash. 2. Establish a procedure for batching, mixing and placing uniform concrete with specified air content and consistency. 3. Demonstrate that concrete of comparable quality can be produced.
Resumo:
The joint between two lanes of asphalt pavement is often the first area of a roadway which shows signs of deterioration and requires maintenance. As the final lift of hot asphalt is being placed in a construction project, it is being forced p against the adjoining lane of cold asphalt, forming the longitudinal joint. The mating of the two lanes, to form a high quality seal, is often not fully successful and later results in premature stripping or raveling as water enters the unsealed joint. The application of a hot poured rubberized asphaltic joint sealant along the joint face in the final stage of construction should help to form a watertight joint seal. A new product, especially formulated for the longitudinal joint in asphalt pavements was proposed to improve joint sealing. The following describes the experimental application of the new product, Crafco, PN 34524.
Resumo:
The major objective of this research project was to investigate how Iowa fly ashes influenced the chemical durability of portland cement based materials. Chemical durability has become an area of uncertainty because of the winter application of deicer salts (rock salts) that contain a significant amount of sulfate impurities. The sulfate durability testing program consisted of monitoring portland cement-fly ash paste, mortar and concrete test specimens that had been subjected to aqueous solutions containing various concentrations of salts (both sulfate and chloride). The paste and mortar specimens were monitored for length as a function of time. The concrete test specimens were monitored for length, relative dynamic modulus and mass as a function of time. The alkali-aggregate reactivity testing program consisted of monitoring the expansion of ASTM C311 mortar bar specimens that contained three different aggregates (Pyrex glass, Oreapolis and standard Ottawa sand). The results of the sulfate durability study indicated that the paste and concrete test specimens tended to exhibit surface spalling but only very slow expansive tendencies. This suggested that the permeability of the test specimens was controlling the rate of deterioration. Concrete specimens are still being monitored because the majority of the test specimens have expanded less than 0.05%; hence, this makes it difficult to estimate the service life of the concrete test specimens or to quantify the performance of the different fly ashes that were used in the study. The results of the mortar bar studies indicated that the chemical composition of the various fly ashes did have an influence on their sulfate resistance. Typically, Clinton and Louisa fly ashes performed the best, followed by the Ottumwa, Neal 4 and then Council Bluffs fly ashes. Council Bluffs fly ash was the only fly ash that consistently reduced the sulfate resistance of the many different mortar specimens that were investigated during this study. None of the trends that were observed in the mortar bar studies have yet become evident in the concrete phase of this project. The results of the alkali-aggregate study indicated that the Oreapolis aggregate is not very sensitive to alkali attack. Two of the fly ashes, Council Bluffs and Ottumwa, tended to increase the expansion of mortar bar specimens that contained the Oreapolis aggregate. However, it was not clear if the additional expansion was due to the alkali content of the fly ash, the periclase content of the fly ash or the cristobalite content of the fly ash, since all three of these factors have been found to influence the test results.
Resumo:
Discarded tires have become a major disposal problem in the U.S. Different techniques of recycling these discarded tires have been tried. The state of Iowa is currently evaluating the use of discarded tires ground into crumb rubber and blending it with asphalt to make asphalt rubber cement (ARC}. This was the sixth project this process has been used in. This project is located on US 169 from the east junction of IA 175 west and north to US 20. Only the binder course was placed this year with the surface course to be let at a later date. There are four test sections, two sections with conventional mixtures and two with ARC mixtures.