339 resultados para Highway bridge
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
With the spiraling cost of construction, coupled with inflation, engineers must develop and research new techniques to better utilize the public's dollar. One area i n which these new technologies must be researched is in the field of highway construction; more specifically, asphalt products. There are areas within the state of Iowa which do not have Class I aggregate readily available for asphalt concrete road construction. The cost of transporting higher quality aggregate specified in the "Standard Specifications for Highway and Bridge construction"' for construction projects is escalating on a yearly basis. Many counties will be squeezed out of the construction of new roadways if an alternative to the high costs is not identified. The same high costs will curtail adequate upkeep on the existing paved system and will result in decreased serviceability. For this reason, a product is needed to better utilize the local aggregates for road construction and maintenance. There i s a product on the market which the promoters claim will improve the prer?nt asphalt to such a degree as to "upgrade deficient aggregates" to the level they can be used in today's standard construction techniques. This product is "Chem-Crete Bitumen," a'kpecially refined asphalt" that was promoted by Chem-Crete Corporation of Menlo Park, California. Chemkrete Technologies, Inc. of Wickliffe, Ohio; a wholly owned subsidiary of the Lubrizol Corporation has since purchased the U.S.
Resumo:
Load Rating: . , :Evaluation of the capacity of a bridge to carry vehicle Inventory Rating: Lbad level which can safely utilize the bridge for an indefinite period of time Operating Rating: Absolute maximum permissible load level for the bridge A load rating states the load in tons which a vehicle can impose on a bridge. Changes in guidelines, standards, and customary uses of bridges require analyses of bridges to be updated and re-evaluated. In this report, twenty-two secondary bridge standards for three types of bridges are rated for the AASHTO HS20-44 vehicle configuration and three typical Iowa legal vehicles
Resumo:
Timber material repair and replacement cost for timber bridges is a considerable expense to highway agencies in Iowa, especially to county road departments. To address these needs, the objectives of this investigation was to study the field effectiveness of various treatment alternatives used on Iowa roadway projects and to determine if the current specifications and testing are adequate for providing proper wood preservation. To satisfy the research needs, the project scope involved a literature review, identification of metrics, questionnaire survey of Iowa counties, onsite inspections, and a review of current specifications and testing procedures. Based on the preservative information obtained, the following general conclusions were made: Copper naphthenate is recommended as the plant-applied preservative treatment for timber bridges. Best Management Practices should be followed to ensure quality treatment of timber materials. Bridge maintenance programs need to be developed and implemented. The Iowa Department of Transportation specifications for preservative treatment are the regulating specification for bridges constructed with state or federal funding in Iowa and are also recommended for all other bridges.
Resumo:
The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed in 2007 over a stream. The bridge’s precast elements included precast cap beams and precast box girders. Precast element fabrication and bridge construction were observed, two precast box girders were tested in the laboratory, and the completed bridge was field tested in 2007 and 2008.
Resumo:
The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBISB) system for use with accelerated construction. A typical PMBISB is comprised of five to six precast MBISB panels and is used on low volume roads, on short spans, and is installed and fabricated by county forces. Precast abutment caps and a precast abutment backwall were also developed by BHC for use with the PMBISB. The objective of the research was to gain knowledge of the global behavior of the bridge system in the field, to quantify the strength and behavior of the individual precast components, and to develop a more time efficient panel-to-panel field connection. Precast components tested in the laboratory include two precast abutment caps, three different types of deck panel connections, and a precast abutment backwall. The abutment caps and backwall were tested for behavior and strength. The three panel-to-panel connections were tested in the lab for strength and were evaluated based on cost and constructability. Two PMBISB were tested in the field to determine stresses, lateral distribution characteristics, and overall global behavior.
Resumo:
For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT (http://srg.cce.iastate.edu/lrfd/) is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results ofLRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
The need to construct bridges that last longer, are less expensive, and take less time to build has increased. The importance of accelerated bridge construction (ABC) technologies has been realized by the Federal Highway Administration (FHWA) and the Iowa Department of Transportation (DOT) Office of Bridges and Structures. This project is another in a series of ABC bridge projects undertaken by the Iowa DOT. Buena Vista County, Iowa, with the assistance of the Iowa Department of Transportation (DOT) and the Bridge Engineering Center (BEC) at Iowa State University, constructed a two-lane single-span precast box girder bridge, using rapid construction techniques. The design involved the use of precast, pretensioned components for the bridge superstructure, substructure, and backwalls. This application and demonstration represents an important step in the development and advancement of these techniques in Iowa as well as nationwide. Prior funding for the design and construction of this bridge (including materials) was obtained through the FHWA Innovative Bridge Research and Deployment (IBRD) Program. The Iowa Highway Research Board (IHRB) provided additional funding to test and evaluate the bridge. This project directly addresses the IBRD goal of demonstrating (and documenting) the effectiveness of innovative materials and construction techniques for the construction of new bridge structures. Evaluation of performance was formulated through comparisons with design assumptions and recognized codes and standards including American Association of State Highway and Transportation Officials (AASHTO) specifications.
Resumo:
"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.
Resumo:
Many of the bridges in the state of Iowa have type ‘CF’, ‘EE’, or ‘EF’ expansion joints installed in the bridge approach slabs. These joints, which are typically 4” wide, are currently filled with a foam expansion joint material that is covered with a sealant. Over time the sealant begins to pull off of the walls of the joint and it ultimately fails. The joint, which is now exposed to the weather, is then filled with water and solids. The foam joint material, which is lighter than water, floats out of the joint onto the highway. This foam resembles a large 4” X 6” plank and poses a threat to motorists. A possible solution to this problem would be to replace the foam material with rubber buffings. Rubber buffings are a by-product of the tire retread industry.
Resumo:
Recent reports have indicated that 23.5% of the nation's highway bridges are structurally deficient and 17.7% are functionally obsolete. A significant number of these bridges are on the Iowa secondary road system where over 86% of the rural bridge management responsibilities are assigned to the counties. Some of the bridges can be strengthened or otherwise rehabilitated, but many more are in need of immediate replacement. In a recent investigation (HR-365 "Evaluation of Bridge Replacement Alternatives for the County Bridge System") several types of replacement bridges that are currently being used on low volume roads were identified. It was also determined that a large number of counties (69%) have the ability and are interested in utilizing their own forces to design and construct short span bridges. In reviewing the results from HR-365, the research team developed one "new" bridge replacement concept and a modification of a replacement system currently being used. Both of these bridge replacement alternatives were investigated in this study, the results of which are presented in two volumes. This volume (Volume 1) presents the results of Concept 1 - Steel Beam Precast Units. Concept 2 - Modification of the Beam-in-Slab Bridge is presented in Volume 2. Concept 1, involves the fabrication of precast units (two steel beams connected by a concrete slab) by county work forces. Deck thickness is limited so that the units can be fabricated at one site and then transported to the bridge site where they are connected and the remaining portion of the deck placed. Since Concept 1 bridge is primarily intended for use on low-volume roads, the precast units can be constructed with new or used beams. In the experimental part of the investigation, there were three types of static load tests: small scale connector tests, "handling strength" tests, and service and overload tests of a model bridge. Three finite element models for analyzing the bridge in various states of construction were also developed. Small scale connector tests were completed to determine the best method of connecting the precast double-T (PCDT) units. "Handling strength" tests on an individual PCDT unit were performed to determine the strength and behavior of the precast unit in this configuration. The majority of the testing was completed on the model bridge [L=9,750 mm (32 ft), W=6,400 mm (21 ft)] which was fabricated using the precast units developed. Some of the variables investigated in the model bridge tests were number of connectors required to connect adjacent precast units, contribution of diaphragms to load distribution, influence of position of diaphragms on bridge strength and load distribution, and effect of cast-in-place portion of deck on load distribution. In addition to the service load tests, the bridge was also subjected to overload conditions. Using the finite element models developed, one can predict the behavior and strength of bridges similar to the laboratory model as well as design them. Concept 1 has successfully passed all laboratory testing; the next step is to field test it.
Resumo:
"Metric Training For The Highway Industry", HR-376 was designed to produce training materials for the various divisions of the Iowa DOT, local government and the highway construction industry. The project materials were to be used to introduce the highway industry in Iowa to metric measurements in their daily activities. Five modules were developed and used in training over 1,000 DOT, county, city, consultant and contractor staff in the use of metric measurements. The training modules developed deal with the planning through operation areas of highway transportation. The materials and selection of modules were developed with the aid of an advisory personnel from the highway industry. Each module is design as a four hour block of instruction and a stand along module for specific types of personnel. Each module is subdivided into four chapters with chapter one and four covering general topics common to all subjects. Chapters two and three are aimed at hands on experience for a specific group and subject. This module includes: Module 3 - Road and Bridge Design. This module provides hands on examples of how to use metric measurements in the design of roads and structures.
Resumo:
The Delamtect was introduced to the Iowa Department of Transportation through a 1975 Federal Highway Administration demonstration project. The Delamtect is a small mobile unit for conducting a rapid bridge deck survey to determine the extent of delaminations (subsurface fractures). Comparison of the Delamtect with manual sounding methods and drilled cores has demonstrated its reliability. This research has shown the Delamtect to be a more effective, more economical and safer method of surveying bridge decks than manual sounding methods. The Delamtect can also be used to provide a measure of the bond within membrane systems.
Resumo:
Recent reports have indicated that 23.5% of the nation's highway bridges are structurally deficient and 17.7% are functionally obsolete. A significant number of these bridges are on the Iowa secondary road system where over 86% of the rural bridge management responsibilities are assigned to the counties. Some of the bridges can be strengthened or otherwise rehabilitated, but many more are in need of immediate replacement. In a recent investigation (HR-365 "Evaluation of Bridge Replacement Alternatives for the County Bridge System") several types of replacement bridges that are currently being used on low volume roads were identified. It was also determined that a large number of counties (69%) have the ability and are interested in utilizing their own forces to design and construct short span bridges. After reviewing the results from HR-365, the research team developed one "new" bridge replacement concept and a modification of a replacement system currently being used. Both of these bridge replacement alternatives were investigated in this study, the results of which are presented in two volumes. This volume (Volume 2) presents the results of Concept 2 - Modification of the Beam-in-Slab Bridge. Concept 1 - Steel Beam Precast Units is presented in Volume 1. Concept 2 involves various laboratory tests of the Beam-in-Slab bridge (BISB) currently being used by Benton County and several other Iowa counties. In this investigation, the behavior and strength of the BISB were determined; a new method of obtaining composite action between the steel beams and concrete was also tested. Since the Concept 2 bridge is primarily intended for use on low-volume roads, the system can be constructed with new or used beams. In the experimental part of the investigation, there were three types of laboratory tests: push-out tests, service and ultimate load tests of models of the BISB, and composite beam tests utilizing the newly developed shear connection. In addition to the laboratory tests, there was a field test in which an existing BISB was service load tested. An equation was developed for predicting the strength of the shear connection investigated; in addition, a finite element model for analyzing the BISB was also developed. Push-out tests were completed to determine the strength of the recently developed shear connector. A total of 36 specimens were tested, with variables such as hole diameter, hole spacing, presence of reinforcement, etc. being investigated. In the model tests of the BISB, two and four beam specimens [L=9,140 mm (30 ft)] were service load tested for behavior and load distribution data. Upon completion of these tests, both specimens were loaded to failure. In the composite beam tests, four beams, one with standard shear studs and three using the shear connection developed, were tested. Upon completion of the service load tests, all four beams were loaded to failure. The strength and behavior of the beams with the new shear connection were found to be essentially the same as that of the specimen with standard shear studs.