21 resultados para Gypsum Plasterboard Panels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early stiffening of cement has been noted as contributing to workability problems with concrete placed in the field. Early stiffening, normally attributed to cements whose gypsum is reduced to hemi⋅hydrate or anhydrate because of high finish mill temperatures, is referred to as false setting. Stiffening attributed to uncontrolled reaction of C3A is referred to as flash set. False setting may be overcame by extended mix period, while flash setting is usually more serious and workability is usually diminished with extended mixing. ASTM C 359 has been used to detect early stiffening with mixed results. The mini slump cone test was developed by Construction Technology Laboratories (CTL), Inc., as an alternative method of determining early stiffening. This research examined the mini slump cone test procedure to determine the repeatability of the results obtained from two different testing procedures, effect of w/c ratio, lifting rate of the cone, and accuracy of the test using a standard sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Department of Transportation (Iowa DOT) UTW Project (HR-559) initiated Ultra-Thin Whitetopping in Iowa. The project is located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. The above listed research project lasted for five years, and then was extended for another five year period. The new phase of the project (TR 432) was initiated by removing cracked panels existing in the 2-inch thick PCC sections and replacing them with three inches of PCC. The project extension provides an increased understanding of slab bonding conditions over a longer period, as well as knowledge regarding the behavior of the newly rehabilitated areas. This report documents the rehabilitation of the PCC patching of all fractured panels and several cracked panels, taking place in September of 2001.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the proposed study is to use Computational Fluid Dynamics (CFD) tools to determine the wind loads by accurate numerical simulations of air flow characteristics around large highway sign structures under severe wind speeds conditions. Fully three-dimensional Reynolds- Averaged Navier-Stokes (RANS) simulations are used to estimate the total force on different panels, as well as the actual pressure distribution on the front and back faces of the panels. In particular, the present study investigates the effects of aspect ratio and sign spacing for regular panels, the effect of sign depth for the dynamic message signs that are now being used on Iowa highways, the effect induced by the presence of back-to-back signs, the effect of the presence of add-on exit signs, and the effect of the presence of trucks underneath the signs potentially creating “wind tunnel” effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part 6 of the Manual on Uniform Traffic Control Devices (MUTCD) describes several types of channelizing devices that can be used to warn road users and guide them through work zones; these devices include cones, tubular markers, vertical panels, drums, barricades, and temporary raised islands. On higher speed/volume roadways, drums and/or vertical panels have been popular choices in many states, due to their formidable appearance and the enhanced visibility they provide when compared to standard cones. However, due to their larger size, drums also require more effort and storage space to transport, deploy and retrieve. Recent editions of the MUTCD have introduced new devices for channelizing; specifically of interest for this study is a taller (>36 inches) but thinner cone. While this new device does not offer a comparable target value to that of drums, the new devices are significantly larger than standard cones and they offer improved stability as well. In addition, these devices are more easily deployed and stored than drums and they cost less. Further, for applications previously using both drums and tall cones, the use of tall cones only provides the ability for delivery and setup by a single vehicle. An investigation of the effectiveness of the new channelizing devices provides a reference for states to use in selecting appropriate traffic control for high speed, high volume applications, especially for short term or limited duration exposures. This study includes a synthesis of common practices by state DOTs, as well as daytime and nighttime field observations of driver reactions using video detection equipment. The results of this study are promising for the day and night performance of the new tall cones, comparing favorably to the performance of drums when used for channelizing in tapers. The evaluation showed no statistical difference in merge distance and location, shy distance, or operating speed in either daytime or nighttime conditions. The study should provide a valuable resource for state DOTs to utilize in selecting the most effective channelizing device for use on high speed/high volume roadways where timely merging by drivers is critical to safety and mobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. One of these, an old pinconnected high-truss single-lane bridge, was selected for a testing program which included ultimate load tests. The purpose of the ultimate load tests, which are summarized in this report, was to relate design and rating procedures presently used in bridge design to the field behavior of this type of truss bridge. The ultimate load tests consisted of ultimate load testing of one span of the bridge, of two I-shaped floorbeams, and of two panels of the timber deck. The theoretical capacity of each of these components is compared with the results from the field tests.