74 resultados para Empresonament--Alternatives
Resumo:
The goals of this project were to implement several stabilization methods for preventing or mitigating freeze-thaw damage to granular surfaced roads and identify the most effective and economical methods for the soil and climate conditions of Iowa. Several methods and technologies identified as potentially suitable for Iowa were selected from an extensive analysis of existing literature provided with Iowa Highway Research Board (IHRB) Project TR-632. Using the selected methods, demonstration sections were constructed in Hamilton County on a heavily traveled two-mile section of granular surfaced road that required frequent maintenance during previous thawing periods. Construction procedures and costs of the demonstration sections were documented, and subsequent maintenance requirements were tabulated through two seasonal freeze-thaw periods. Extensive laboratory and field tests were performed prior to construction, as well as before and after the two seasonal freeze-thaw periods, to monitor the performance of the demonstration sections. A weather station was installed at the project site and temperature sensors were embedded in the subgrade to monitor ground temperatures up to a depth of 5 ft and determine the duration and depths of ground freezing and thawing. An economic analysis was performed using the documented construction and maintenance costs, and the estimated cumulative costs per square yard were projected over a 20-year timeframe to determine break-even periods relative to the cost of continuing current maintenance practices. Overall, the sections with biaxial geogrid or macadam base courses had the best observed freeze-thaw performance in this study. These two stabilization methods have larger initial costs and longer break-even periods than aggregate columns, but counties should also weigh the benefits of improved ride quality and savings that these solutions can provide as excellent foundations for future paving or surface upgrades.
Resumo:
Report on a review of the Resource Enhancement and Protection (REAP) program and the Solid Waste Alternatives Program (SWAP) administered by the Department of Natural Resources (DNR) for the period July 1, 2009 through June 30, 2015
Resumo:
In February the U.S. 20 Corridor Development Study's Steering Committee met to review Report A. At that meeting the Committee selected seven alternatives to be evaluated from a cost and traffic perspective. This report, Report B, presents the cost and traffic evaluation of these seven alternatives. This Report B and its cost and traffic estimates will be reviewed at the next Steering Committee meeting. At that time it is possible that, based on the traffic and cost estimates, one or more of the alternatives will be eliminated from further consideration. After that meeting the Consultant will initiate the more in-depth analyses, including the economic feasibility
Resumo:
Report produced by the Department of Corrections
Resumo:
Four-lane undivided roadways in urban areas can experience a degradation of service and/or safety as traffic volumes increase. In fact, the existence of turning vehicles on this type of roadway has a dramatic effect on both of these factors. The solution identified for these problems is typically the addition of a raised median or two-way left-turn lane (TWLTL). The mobility and safety benefits of these actions have been proven and are discussed in the “Past Research” chapter of this report along with some general cross section selection guidelines. The cost and right-of-way impacts of these actions are widely accepted. These guidelines focus on the evaluation and analysis of an alternative to the typical four-lane undivided cross section improvement approach described above. It has been found that the conversion of a four-lane undivided cross section to three lanes (i.e., one lane in each direction and a TWLTL) can improve safety and maintain an acceptable level of service. These guidelines summarize the results of past research in this area (which is almost nonexistent) and qualitative/quantitative before-and-after safety and operational impacts of case study conversions located throughout the United States and Iowa. Past research confirms that this type of conversion is acceptable or feasible in some situations but for the most part fails to specifically identify those situations. In general, the reviewed case study conversions resulted in a reduction of average or 85th percentile speeds (typically less than five miles per hour) and a relatively dramatic reduction in excessive speeding (a 60 to 70 percent reduction in the number of vehicles traveling five miles per hour faster than the posted speed limit was measured in two cases) and total crashes (reductions between 17 to 62 percent were measured). The 13 roadway conversions considered had average daily traffic volumes of 8,400 to 14,000 vehicles per day (vpd) in Iowa and 9,200 to 24,000 vehicles per day elsewhere. In addition to past research and case study results, a simulation sensitivity analysis was completed to investigate and/or confirm the operational impacts of a four-lane undivided to three-lane conversion. First, the advantages and disadvantages of different corridor simulation packages were identified for this type of analysis. Then, the CORridor SIMulation (CORSIM) software was used x to investigate and evaluate several characteristics related to the operational feasibility of a four-lane undivided to three-lane conversion. Simulated speed and level of service results for both cross sections were documented for different total peak-hour traffic, access densities, and access-point left-turn volumes (for a case study corridor defined by the researchers). These analyses assisted with the identification of the considerations for the operational feasibility determination of a four -lane to three-lane conversion. The results of the simulation analyses primarily confirmed the case study impacts. The CORSIM results indicated only a slight decrease in average arterial speed for through vehicles can be expected for a large range of peak-hour volumes, access densities, and access-point left-turn volumes (given the assumptions and design of the corridor case study evaluated). Typically, the reduction in the simulated average arterial speed (which includes both segment and signal delay) was between zero and four miles per hour when a roadway was converted from a four-lane undivided to a three-lane cross section. The simulated arterial level of service for a converted roadway, however, showed a decrease when the bi-directional peak-hour volume was about 1,750 vehicles per hour (or 17,500 vehicles per day if 10 percent of the daily volume is assumed to occur in the peak hour). Past research by others, however, indicates that 12,000 vehicles per day may be the operational capacity (i.e., level of service E) of a three-lane roadway due to vehicle platooning. The simulation results, along with past research and case study results, appear to support following volume-related feasibility suggestions for four-lane undivided to three-lane cross section conversions. It is recommended that a four-lane undivided to three-lane conversion be considered as a feasible (with respect to volume only) option when bi-directional peak-hour volumes are less than 1,500 vehicles per hour, but that some caution begin to be exercised when the roadway has a bi-directional peak-hour volume between 1,500 and 1,750 vehicles per hour. At and above 1,750 vehicles per hour, the simulation indicated a reduction in arterial level of service. Therefore, at least in Iowa, the feasibility of a four-lane undivided to three-lane conversion should be questioned and/or considered much more closely when a roadway has (or is expected to have) a peak-hour volume of more than 1,750 vehicles. Assuming that 10 percent of the daily traffic occurs during the peak-hour, these volume recommendations would correspond to 15,000 and 17,500 vehicles per day, respectively. These suggestions, however, are based on the results from one idealized case xi study corridor analysis. Individual operational analysis and/or simulations should be completed in detail once a four-lane undivided to three-lane cross section conversion is considered feasible (based on the general suggestions above) for a particular corridor. All of the simulations completed as part of this project also incorporated the optimization of signal timing to minimize vehicle delay along the corridor. A number of determination feasibility factors were identified from a review of the past research, before-and-after case study results, and the simulation sensitivity analysis. The existing and expected (i.e., design period) statuses of these factors are described and should be considered. The characteristics of these factors should be compared to each other, the impacts of other potentially feasible cross section improvements, and the goals/objectives of the community. The factors discussed in these guidelines include • roadway function and environment • overall traffic volume and level of service • turning volumes and patterns • frequent-stop and slow-moving vehicles • weaving, speed, and queues • crash type and patterns • pedestrian and bike activity • right-of-way availability, cost, and acquisition impacts • general characteristics, including - parallel roadways - offset minor street intersections - parallel parking - corner radii - at-grade railroad crossings xii The characteristics of these factors are documented in these guidelines, and their relationship to four-lane undivided to three-lane cross section conversion feasibility identified. This information is summarized along with some evaluative questions in this executive summary and Appendix C. In summary, the results of past research, numerous case studies, and the simulation analyses done as part of this project support the conclusion that in certain circumstances a four-lane undivided to three-lane conversion can be a feasible alternative for the mitigation of operational and/or safety concerns. This feasibility, however, must be determined by an evaluation of the factors identified in these guidelines (along with any others that may be relevant for a individual corridor). The expected benefits, costs, and overall impacts of a four-lane undivided to three-lane conversion should then be compared to the impacts of other feasible alternatives (e.g., adding a raised median) at a particular location.
Resumo:
In this day of the mature highway systems, a new set of problems is facing the highway engineer. The existing infrastructure has aged to or past the design life of the original pavement design. In many cases, increased commercial traffic is creating the need for additional load carrying capacity, causing state highway engineers to consider new alternatives for rehabilitation of existing surfaces. Alternative surface materials, thicknesses, and methods of installation must be identified to meet the needs of individual pavements and budgets. With overlays being one of the most frequently used rehabilitation alternatives, it is important to learn more about the limitations and potential performance of thin bonded portland cement overlays and subsequent rehabilitation. The Iowa ultra-thin project demonstrated the application of thin portland cement concrete overlays as a rehabilitation technique. It combined the variables of base preparation, overlay thickness, slab size, and fiber enhancement into a series of test sections over a 7.2-mile length. This report identifies the performance of the overlays in terms of deflection reduction, reduced cracking, and improved bonding between the portland cement concrete (PCC) and asphalt cement concrete (ACC) base layers. The original research project was designed to evaluate the variables over a 5-year period of time. A second project provided the opportunity to test overlay rehabilitation techniques and continue measurement of the original overlay performance for 5 additional years. All performance indicators identified exceptional performance over the 10-year evaluation period for each of the variable combinations considered. The report summarizes the research methods, results, and identifies future research ideas to aid the pavement overlay designer in the successful implementation of ultra-thin portland cement concrete overlays as an lternative pavement rehabilitation technique.
Resumo:
This document is intended to assist Iowa communities in making informed decisions on combining school and public library services. It provides decision-makers with a means of assessing the feasibility of establishing a combined library and, if the decision is made to proceed, with a Planning Guide that addresses the many areas of library operations that need to be considered if the combined library is to be successful. Alternatives to combining libraries exist. Contracted services provide one such option. There are many areas where school and public libraries can and should collaborate in order to provide better service to the community. These alternatives are also outlined in this document.
Resumo:
Transportation is an important health care issue. The majority of the population here in Iowa have ready access and typically use private automobiles to access health care and other community services. There is also a significant segment of the population that either does not have access to a personal automobile or is not currently capable of driving. This can potentially limit their access to health care, but it has greater health implications because it can also limit access to nutrition and other community services, as well as involvement in social activities. For people unable to drive themselves, the alternatives generally include reliance on family, friends, volunteer groups, and public transit. Many choose transit because it gives them a degree of independence. Public transit is often used to supplement other options even when they are available. It becomes critical in circumstances where the other options don’t exist. In many cases there may be no family available or they may not always be able to get off work when travel needs arise during the workday. Friends may be in similar circumstances and volunteer groups may be either unavailable or overwhelmed. The fact that many patients depend on public transit to get to and from health care appointments makes it beneficial for health care professionals to get to know more about public transit and how it operates here in Iowa.
Resumo:
Concerns about biosecurity in the food system raise a variety of issues about how the system is presently organized, why it might be vulnerable, what one could reasonably do to better secure it, and the costs of doing so. After presenting some facts about US agriculture and food, this paper considers three economic aspects of the general problem. One is the global problem, or the way biosecurity measures can affect how countries relate to each other and the global consequences that result. Another is how to best manage the immediate aftermath of a realized threat in order to minimize damage. The third is how to seek to prevent realization of the threat. Some policy alternatives are also presented.
Resumo:
This manual captures the experience of practitioners in the Iowa Department of Transportation’s (Iowa DOT’s) Office of Location and Environment (OLE). It also documents the need for coordinated project development efforts during the highway project planning, or location study phase and engineering design. The location study phase establishes: * The definition of, and need for, the highway improvement project * The range of alternatives and many key attributes of the project’s design * The recommended alternative, its impacts, and the agreed-to conditions for project approval The location study process involves developing engineering alternatives, collecting engineering and environmental data, and completing design refinements to accomplish functional designs. The items above also embody the basic content required for projects compliant with the National Environmental Policy Act (NEPA) of 19691, which directs federal agencies to use a systematic, interdisciplinary approach during the planning process whenever proposed actions (or “projects”) have the potential for environmental impacts. In doing so, NEPA requires coordination with stakeholders, review, comment, and public disclosure. Are location studies and environmental studies more about the process or the documents? If properly conducted, they concern both—unbiased and reasonable processes with quality and timely documents. In essence, every project is a story that needs to be told. Engineering and environmental regulations and guidance, as documented in this manual, will help project staff and managers become better storytellers.
Resumo:
The "50 States Project" is the name given to President Ronald D. Reagan;s 1981 pledge to encourage the fifty governors to initiate individual state projects to review their state Codes for unequal treatment of persons based upon sex. We believe that Iowa is the first state to complete this project. Project efforts in Iowa began in June of 1981, when the Governor Robert D. ray appointed Dr. Patricia L. Geadelmann, Chairperson on the Iowa commission on the Status of Women, as Iowa's 50 State Project representative. A 50 States planning committee was formed consisting of members from the Governor Ray's staff, the Iowa Commission on the Status of Women, and the Iowa Legislature. Various alternatives for reviewing the Iowa code and the Iowa Administrative Rules were studied and recommendations of the group were reported to Governor Terry E. Branstad prior to his inauguration.
Resumo:
With the support of the Iowa Fly Ash Affiliates, research on reclaimed fly ash for use as a construction material has been ongoing since 1991. The material exhibits engineering properties similar to those of soft limestone or sandstone and a lightweight aggregate. It is unique in that it is rich in calcium, silica, and aluminum and exhibits pozzolanic properties (i.e. gains strength over time) when used untreated or when a calcium activator is added. Reclaimed Class C fly ashes have been successfully used as a base material on a variety of construction projects in southern and western Iowa. A pavement design guide has been developed with the support of the Iowa Fly Ash Affiliates. Soils in Iowa generally rate fair to poor as subgrade soils for paving projects. This is especially true in the southern quarter of the state and for many areas of eastern and western Iowa. Many of the soil types encountered for highway projects are unsuitable soils under the current Iowa DOT specifications. The bulk of the remaining soils are Class 10 soils. Select soils for use directly under the pavement are often difficult to find on a project, and in many instances are economically unavailable. This was the case for a 4.43-mile grading (STP-S- 90(22)-SE-90) and paving project in Wapello County. The project begins at the Alliant Utilities generating station in Chillicothe, Iowa, and runs west to the Monroe-Wapello county line. This road carries a significant amount of truck traffic hauling coal from the generating station to the Cargill corn processing plant in Eddyville, Iowa. The proposed 10-inch Portland Cement Concrete (PCC) pavement was for construction directly on a Class 10 soil subgrade, which is not a desirable condition if other alternatives are available. Wapello County Engineer Wendell Folkerts supported the use of reclaimed fly ash for a portion of the project. Construction of about three miles of the project was accomplished using 10 inches of reclaimed fly ash as a select fill beneath the PCC slab. The remaining mile was constructed according to the original design to be used as a control section for performance monitoring. The project was graded during the summers of 1998 and 1999. Paving was completed in the fall of 1999. This report presents the results of design considerations and laboratory and field testing results during construction. Recommendations for use of reclaimed fly ash as a select fill are also presented.
Resumo:
One-on-one communication with driver’s license customers is the most valuable tool Driver Services employees use to help drivers stay independent and safe. Driver Services employees understand that a sense of remaining independent, in everything from running errands to shopping to visits with friends, family and doctors, depends on a driver’s license. There are times when Driver Services personnel, or even the drivers themselves, determine it’s time to stop driving. In those cases, people are given a free identification card. There are also times when the DOT must suspend a person’s driving privilege. This can be caused by vision problems, a medical condition or unsafe driving. If the driver cannot be relicensed, DOT personnel make the commitment to work with the individual by providing information about available transportation alternatives. We are providing this information to make the renewal process understandable and less stressful. We hope that by explaining why the DOT screens vision, requires medical information and requests drive tests, and describing how these all relate to highway safety, drivers will know what to expect. Personnel are available to answer questions or discuss concerns at any of the Iowa Department of Transportation or County Treasurer driver’s license sites. Please contact one of the driver’s license stations listed in this booklet.
Resumo:
This guide provides a clear, concise, and cohesive presentation of cement-bound materials options for 10 specific engineering pavement applications: new concrete pavements, concrete overlays, previous concrete, precast pavements, roller-compacted concrete, cement-treated base, full-depth reclamation with cement, cement-modified soils, recycled concrete aggregates, and repair and restoration. Each application is presented as a method for meeting specific design and construction objectives that today’s pavement practitioners must accomplish. The benefits, considerations, brief description, and summary of materials, design, and construction requirements, as well as a list of sustainable attributes, are provided for every solution. This guide is intended to be short, simple, and easy to understand. It was designed so that the most up-to-date and relevant information is easily extractable. It is not intended to be used as a design guide for any of the applications identified herein. Recommendations for additional information that can provide such details are given at the end of each solution discussion. The intended audience is practitioners, including engineers and managers who face decisions regarding what materials to specify in the pavement systems they design or manage. The audience also includes city and county engineers, along with the A/E firms that often represent them, and state DOT engineers at all levels who are seeking alternatives in this era of changing markets.
Resumo:
Highway safety and pavement performance can be directly influenced by the type of shoulders that are constructed. Shoulder design alternatives have always been rather limited. Moreover, the use of some of the alternatives has always been restricted by funding limitations. This research project seeks to explore the use of modified macadam base construction for shoulders. This type of shoulder design could offer the designer another option when paved or stabilized shoulders are being considered. Macadam base construction has in the past been shown to be quite strong and free draining. Two macadam base shoulder designs were developed and constructed for this research project. A new roadway embankment and P.C.C. pavement were constructed on a section of US 6 east of Adel in Dallas County. The macadam base shoulders were constructed adjacent to the pavement as part of the project. The north shoulder was finished with a choke stone course and bituminous surface treatment and the south shoulder was finished with a two (2) inch layer of Type B Class I1 asphalt concrete. Macadam stone base shoulders can be built with relatively minor construction problems with comparable strength and less cost than asphalt treated base shoulders. The macadam stone base shoulders have performed well with very little maintenance necessary. The improved drainage substantially reduces deterioration of the pavement joints.