2 resultados para physiologic values
Resumo:
INTRODUCTION Although several parameters have been proposed to predict the hemodynamic response to fluid expansion in critically ill patients, most of them are invasive or require the use of special monitoring devices. The aim of this study is to determine whether noninvasive evaluation of respiratory variation of brachial artery peak velocity flow measured using Doppler ultrasound could predict fluid responsiveness in mechanically ventilated patients. METHODS We conducted a prospective clinical research in a 17-bed multidisciplinary ICU and included 38 mechanically ventilated patients for whom fluid administration was planned due to the presence of acute circulatory failure. Volume expansion (VE) was performed with 500 mL of a synthetic colloid. Patients were classified as responders if stroke volume index (SVi) increased >or= 15% after VE. The respiratory variation in Vpeakbrach (DeltaVpeakbrach) was calculated as the difference between maximum and minimum values of Vpeakbrach over a single respiratory cycle, divided by the mean of the two values and expressed as a percentage. Radial arterial pressure variation (DeltaPPrad) and stroke volume variation measured using the FloTrac/Vigileo system (DeltaSVVigileo), were also calculated. RESULTS VE increased SVi by >or= 15% in 19 patients (responders). At baseline, DeltaVpeakbrach, DeltaPPrad and DeltaSVVigileo were significantly higher in responder than nonresponder patients [14 vs 8%; 18 vs. 5%; 13 vs 8%; P < 0.0001, respectively). A DeltaVpeakbrach value >10% predicted fluid responsiveness with a sensitivity of 74% and a specificity of 95%. A DeltaPPrad value >10% and a DeltaSVVigileo >11% predicted volume responsiveness with a sensitivity of 95% and 79%, and a specificity of 95% and 89%, respectively. CONCLUSIONS Respiratory variations in brachial artery peak velocity could be a feasible tool for the noninvasive assessment of fluid responsiveness in patients with mechanical ventilatory support and acute circulatory failure. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT00890071.
Resumo:
Ambulatory blood pressure (BP) monitoring has become useful in the diagnosis and management of hypertensive individuals. In addition to 24-hour values, the circadian variation of BP adds prognostic significance in predicting cardiovascular outcome. However, the magnitude of circadian BP patterns in large studies has hardly been noticed. Our aims were to determine the prevalence of circadian BP patterns and to assess clinical conditions associated with the nondipping status in groups of both treated and untreated hypertensive subjects, studied separately. Clinical data and 24-hour ambulatory BP monitoring were obtained from 42,947 hypertensive patients included in the Spanish Society of Hypertension Ambulatory Blood Pressure Monitoring Registry. They were 8384 previously untreated and 34,563 treated hypertensives. Twenty-four-hour ambulatory BP monitoring was performed with an oscillometric device (SpaceLabs 90207). A nondipping pattern was defined when nocturnal systolic BP dip was <10% of daytime systolic BP. The prevalence of nondipping was 41% in the untreated group and 53% in treated patients. In both groups, advanced age, obesity, diabetes mellitus, and overt cardiovascular or renal disease were associated with a blunted nocturnal BP decline (P<0.001). In treated patients, nondipping was associated with the use of a higher number of antihypertensive drugs but not with the time of the day at which antihypertensive drugs were administered. In conclusion, a blunted nocturnal BP dip (the nondipping pattern) is common in hypertensive patients. A clinical pattern of high cardiovascular risk is associated with nondipping, suggesting that the blunted nocturnal BP dip may be merely a marker of high cardiovascular risk.