12 resultados para mitochondrial mutations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the non-B HIV-1 subtypes are predominant in Sub-Saharan Africa and India although they have been found worldwide. In the last decade, immigration from these areas has increased considerably in Spain. The objective of this study was to evaluate the prevalence of non-B subtypes circulating in a cohort of HIV-1-infected immigrants in Seville, Southern Spain and to identify drug resistance-associated mutations. METHODS: Complete protease and first 220 codons of the reverse transcriptase coding regions were amplified and sequenced by population sequencing. HIV-1 subtypes were determined using Stanford University Drug Resistance Database, and phylogenetic analysis was performed comparing multiple reported sequences. Drug resistance mutations were defined according to the International AIDS Society-USA. RESULTS: From 2000 to 2010 a total of 1,089 newly diagnosed HIV-1-infected patients were enrolled in our cohort. Of these, 121 were immigrants, of which 98 had ethical approval and informed consent to include in our study. Twenty-nine immigrants (29/98, 29.6%) were infected with non-B subtypes, of which 15/29 (51.7%) were CRF02-AG, mostly from Sub-Saharan Africa, and 2/29 (6.9%) were CRF01-AE from Eastern Europe. A, C, F, J and G subtypes from Eastern Europe, Central-South America and Sub-Saharan Africa were also present. Some others harboured recombinant forms CRF02-AG/CRF01-AE, CRF2-AG/G and F/B, B/C, and K/G, in PR and RT-coding regions. Patients infected with non-B subtypes showed a high frequency of minor protease inhibitor resistance mutations, M36I, L63P, and K20R/I. Only one patient, CRF02_AG, showed major resistance mutation L90M. Major RT inhibitor resistance mutations K70R and A98G were present in one patient with subtype G, L100I in one patient with CRF01_AE, and K103N in another patient with CRF01_AE. Three patients had other mutations such as V118I, E138A and V90I. CONCLUSIONS: The circulation of non-B subtypes has significantly increased in Southern Spain during the last decade, with 29.6% prevalence, in association with demographic changes among immigrants. This could be an issue in the treatment and management of these patients. Resistance mutations have been detected in these patients with a prevalence of 7% among treatment-naïve patients compared with the 21% detected among patients under HAART or during treatment interruption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia. Methods. We studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells. Results. We found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy. Conclusions. These findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. METHODS: We describe a high resolution melting (HRM) assay for mutation detection in EGFR exons 19-21, KRAS codon 12/13 and BRAF V600 using formalin-fixed paraffin-embedded samples. Somatic variation of KRAS exon 2 was also analysed by massively parallel pyrosequencing of amplicons with the GS Junior 454 platform. RESULTS: We tested 120 routine diagnostic specimens from patients with colorectal or lung cancer. Mutations in KRAS, BRAF and EGFR were observed in 41.9%, 13.0% and 11.1% of the overall samples, respectively, being mutually exclusive. For KRAS, six types of substitutions were detected (17 G12D, 9 G13D, 7 G12C, 2 G12A, 2 G12V, 2 G12S), while V600E accounted for all the BRAF activating mutations. Regarding EGFR, two cases showed exon 19 deletions (delE746-A750 and delE746-T751insA) and another two substitutions in exon 21 (one showed L858R with the resistance mutation T590M in exon 20, and the other had P848L mutation). Consistent with earlier reports, our results show that KRAS and BRAF mutation frequencies in colorectal cancer were 44.3% and 13.0%, respectively, while EGFR mutations were detected in 11.1% of the lung cancer specimens. Ultra-deep amplicon pyrosequencing successfully validated the HRM results and allowed detection and quantitation of KRAS somatic mutations. CONCLUSIONS: HRM is a rapid and sensitive method for moderate-throughput cost-effective screening of oncogene mutations in clinical samples. Rather than Sanger sequence validation, next-generation sequencing technology results in more accurate quantitative results in somatic variation and can be achieved at a higher throughput scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years it has been shown that emotional stress induced by immobilization may change the balance between pro-oxidant and antioxidant factors inducing oxidative damage. On the other hand, contradictory views exist concerning the role of physical activity on redox metabolism. Consequently, the present work was designed to assess the influence of an 8-week moderate swimming training program in emotionally stressed rats. Sixty 1-month-old male albino Wistar rats weighing 125-135 g were used in this experimental study. They were divided into three groups, as Control (lot A; n=20), Stressed (lot B; n=20) and Stressed & Exercised (lot C; n=20). Rats were stressed by placing the animals in a 25 x 7 cm plastic bottle 1 h/day, 5 days a week for 8 weeks. Protein carbonyl content values in liver homogenates were significantly increased in stressed animals (0.58+/-0.02 vs 0.86+/-0.03; p=0.018) which clearly indicated that emotional stress was associated with oxidative stress. Ultrastructural alterations, predominantly mitochondrial swelling and the decrease of cristae number observed by electron microscopy represented direct evidence of membrane injury. The most striking feature of our study was that we also found differences between stressed rats and stressed rats that performed our 8 week training program. Consequently our results highlight the potential benefit of a moderate training program to reduce oxidative damage induced by emotional stress since it attenuated protein oxidation and mitochondrial alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucokinase is essential for glucose-stimulated insulin release from the pancreatic beta-cell, serving as glucose sensor in humans. Inactivating or activating mutations of glucokinase lead to different forms of glucokinase disease, i.e. GCK-monogenic diabetes of youth, permanent neonatal diabetes (inactivating mutations), and congenital hyperinsulinism, respectively. Here we present a novel glucokinase gene (GCK)-activating mutation (p.E442K) found in an infant with neonatal hypoglycemia (1.5 mmol/liter) and in two other family members suffering from recurrent hypoglycemic episodes in their childhood and adult life. In contrast to the severe clinical presentation in the index case, functional studies showed only a slight activation of the protein (relative activity index of 3.3). We also report on functional studies of two inactivating mutations of the GCK (p.E440G and p.S441W), contiguous to the activating one, that lead to monogenic diabetes of youth. Interestingly, adult family members carrying the GCK pE440G mutation show an unusually heterogeneous and progressive diabetic phenotype, a feature not typical of GCK-monogenic diabetes of youth. In summary, we identified a novel activating GCK mutation that although being associated with severe neonatal hypoglycemia is characterized by the mildest activation of the glucokinase enzyme of all previously reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. METHODS Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. RESULTS We found no evidence of KRAS oncogenic mutations in all analyzed tumors. CONCLUSIONS This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND It is known that mitochondria play an important role in certain cancers (prostate, renal, breast, or colorectal) and coronary disease. These organelles play an essential role in apoptosis and the production of reactive oxygen species; in addition, mtDNA also reveals the history of populations and ancient human migration. All these events and variations in the mitochondrial genome are thought to cause some cancers, including prostate cancer, and also help us to group individuals into common origin groups. The aim of the present study is to analyze the different haplogroups and variations in the sequence in the mitochondrial genome of a southern European population consisting of subjects affected (n = 239) and non-affected (n = 150) by sporadic prostate cancer. METHODOLOGY AND PRINCIPAL FINDINGS Using primer extension analysis and DNA sequencing, we identified the nine major European haplogroups and CR polymorphisms. The frequencies of the haplogroups did not differ between patients and control cohorts, whereas the CR polymorphism T16356C was significantly higher in patients with PC compared to the controls (p = 0.029). PSA, staging, and Gleason score were associated with none of the nine major European haplogroups. The CR polymorphisms G16129A (p = 0.007) and T16224C (p = 0.022) were significantly associated with Gleason score, whereas T16311C (p = 0.046) was linked with T-stage. CONCLUSIONS AND SIGNIFICANCE Our results do not suggest that mtDNA haplogroups could be involved in sporadic prostate cancer etiology and pathogenesis as previous studies performed in middle Europe population. Although some significant associations have been obtained in studying CR polymorphisms, further studies should be performed to validate these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of Imatinib Mesylate (IM), the first specific inhibitor of BCR-ABL1, has had a major impact in patients with Chronic Myeloid Leukemia (CML), establishing IM as the standard therapy for CML. Despite the clinical success obtained with the use of IM, primary resistance to IM and molecular evidence of persistent disease has been observed in 20-25% of IM treated patients. The existence of second generation TK inhibitors, which are effective in patients with IM resistance, makes identification of predictors of resistance to IM an important goal in CML. In this study, we have identified a group of 19 miRNAs that may predict clinical resistance to IM in patients with newly diagnosed CML.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Alternative macrophages (M2) express the cluster differentiation (CD) 206 (MCR1) at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages) gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23). The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6). RESULTS MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005) in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3). AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures. CONCLUSION A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Androgen receptor (AR) gene mutations are the most frequent cause of 46,XY disorders of sex development (DSD) and are associated with a variety of phenotypes, ranging from phenotypic women [complete androgen insensitivity syndrome (CAIS)] to milder degrees of undervirilization (partial form or PAIS) or men with only infertility (mild form or MAIS). OBJECTIVE The aim of the study was to characterize the contribution of the AR gene to the molecular cause of 46,XY DSD in a series of Spanish patients. SETTING We studied a series of 133 index patients with 46,XY DSD in whom gonads were differentiated as testes, with phenotypes including varying degrees of undervirilization, and in whom the AR gene was the first candidate for a molecular analysis. METHODS The AR gene was sequenced (exons 1 to 8 with intronic flanking regions) in all patients and in family members of 61% of AR-mutated gene patients. RESULTS AR gene mutations were found in 59 individuals (44.4% of index patients), of whom 46 (78%) were CAIS and 13 (22%) PAIS. Fifty-seven different mutations were found: 21.0% located in exon 1, 15.8% in exons 2 and 3, 57.9% in exons 4-8, and 5.3% intronic. Twenty-three mutations (40.4%) had been previously described and 34 (59.6%) were novel. CONCLUSIONS AR gene mutation is the most frequent cause of 46,XY DSD, with a clearly higher frequency in the complete phenotype. Mutations spread along the whole coding sequence, including exon 1. This series shows that 60% of mutations detected during the period 2002-2009 were novel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats. METHODS/FINDINGS Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations. CONCLUSIONS The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive tubular disorder characterized by excessive renal magnesium and calcium excretion and chronic kidney failure. This rare disease is caused by mutations in the CLDN16 and CLDN19 genes. These genes encode the tight junction proteins claudin-16 and claudin-19, respectively, which regulate the paracellular ion reabsorption in the kidney. Patients with mutations in the CLDN19 gene also present severe visual impairment. Our goals in this study were to examine the clinical characteristics of a large cohort of Spanish patients with this disorder and to identify the disease causing mutations. We included a total of 31 patients belonging to 27 unrelated families and studied renal and ocular manifestations. We then analyzed by direct DNA sequencing the coding regions of CLDN16 and CLDN19 genes in these patients. Bioinformatic tools were used to predict the consequences of mutations. Clinical evaluation showed ocular defects in 87% of patients, including mainly myopia, nystagmus and macular colobomata. Twenty two percent of patients underwent renal transplantation and impaired renal function was observed in another 61% of patients. Results of the genetic analysis revealed CLDN19 mutations in all patients confirming the clinical diagnosis. The majority of patients exhibited the previously described p.G20D mutation. Haplotype analysis using three microsatellite markers showed a founder effect for this recurrent mutation in our cohort. We also identified four new pathogenic mutations in CLDN19, p.G122R, p.I41T, p.G75C and p.G75S. A strategy based on microsequencing was designed to facilitate the genetic diagnosis of this disease. Our data indicate that patients with CLDN19 mutations have a high risk of progression to chronic renal disease.