2 resultados para atrofia periodontal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Plasma citrulline is not incorporated in endogenous or exogenous proteins so it is a theoretical marker of villous atrophy. Our aim was to correlate plasma citrulline levels with severity of villous atrophy inceliac patients. Methods: Observational case-control study longitudinal in children 16 month-old to 14 year-old: 48 with untreated celiac disease, 9 celiac children under gluten free diet and 35 non-celiac healthy children. Plasma amino acids concentration is determined, expressed in μmol/L, and so are other clinical and analytical data. Results: No statistically significative difference found in the referring to BMI, age or renal function. Small increase in fecal fat in celiac children. Citrulline, arginine and glutamine are significantly lower in cases (17.7 μmol/l, 38.7 μmol/l, 479.6 μmol/l respectively) than in controls (28.9 μmol/l, 56.2 μmol/l, 563.7 μmol/l). Citrulline levels are significantly lower in the severe degrees of atrophy than in mild ones (13.8 μmol/l vs. 19.7 μmol/l, p < 0.05), not happening so with rest of amminoacids. Summary: Postabsortive mean of plasma citrulline is a good marker of reduction in enterocyte mass in celiac patients with villous atrophy; secondary reduction in plasma arginine too. Just a small histological alteration in intestinal biopsy is enough to differentiate citrulline in cases and controls and besides it can be seen that high levels of atrophy present with lower plasma citrulline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats. METHODS/FINDINGS Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations. CONCLUSIONS The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.