2 resultados para Velocity Measurements
Resumo:
INTRODUCTION Although several parameters have been proposed to predict the hemodynamic response to fluid expansion in critically ill patients, most of them are invasive or require the use of special monitoring devices. The aim of this study is to determine whether noninvasive evaluation of respiratory variation of brachial artery peak velocity flow measured using Doppler ultrasound could predict fluid responsiveness in mechanically ventilated patients. METHODS We conducted a prospective clinical research in a 17-bed multidisciplinary ICU and included 38 mechanically ventilated patients for whom fluid administration was planned due to the presence of acute circulatory failure. Volume expansion (VE) was performed with 500 mL of a synthetic colloid. Patients were classified as responders if stroke volume index (SVi) increased >or= 15% after VE. The respiratory variation in Vpeakbrach (DeltaVpeakbrach) was calculated as the difference between maximum and minimum values of Vpeakbrach over a single respiratory cycle, divided by the mean of the two values and expressed as a percentage. Radial arterial pressure variation (DeltaPPrad) and stroke volume variation measured using the FloTrac/Vigileo system (DeltaSVVigileo), were also calculated. RESULTS VE increased SVi by >or= 15% in 19 patients (responders). At baseline, DeltaVpeakbrach, DeltaPPrad and DeltaSVVigileo were significantly higher in responder than nonresponder patients [14 vs 8%; 18 vs. 5%; 13 vs 8%; P < 0.0001, respectively). A DeltaVpeakbrach value >10% predicted fluid responsiveness with a sensitivity of 74% and a specificity of 95%. A DeltaPPrad value >10% and a DeltaSVVigileo >11% predicted volume responsiveness with a sensitivity of 95% and 79%, and a specificity of 95% and 89%, respectively. CONCLUSIONS Respiratory variations in brachial artery peak velocity could be a feasible tool for the noninvasive assessment of fluid responsiveness in patients with mechanical ventilatory support and acute circulatory failure. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT00890071.
Resumo:
Background: The glycosylated hemoglobin (HbA1c) is used to help monitor the degree of a diabetic’s hyperglycemia. Security and accuracy of the methods used in its detection are affected by variants forms of Hb or elevations in levels of Fetal Hb (HbF). These interference are the result of a change in the haemoglobin total net charge of the variant due of a substitution of one amino acid in the remaining amino terminal of the beta chain. International Standardization for HbA1c values (NGSP) not include interference assessment as part of the certification program. Therefore, the effect of each variant or the lifting of the HbF on HbA1c result should be examined in each sample depending on the detected variant and the method used for the detection of the same. The objectives were: to describe the possible variants of Hb and their interference in HbA1c measurement by our method, after the implementation of a computer program for their detection. To identify some variants detected by chromatography liquid ion exchange high resolution (HPLC) with DNA molecular sequencing.