2 resultados para Reflect Array
Resumo:
To date, no effective method exists that predicts the response to preoperative chemoradiation (CRT) in locally advanced rectal cancer (LARC). Nevertheless, identification of patients who have a higher likelihood of responding to preoperative CRT could be crucial in decreasing treatment morbidity and avoiding expensive and time-consuming treatments. The aim of this study was to identify signatures or molecular markers related to response to pre-operative CRT in LARC. We analyzed the gene expression profiles of 26 pre-treatment biopsies of LARC (10 responders and 16 non-responders) without metastasis using Human WG CodeLink microarray platform. Two hundred and fifty seven genes were differentially over-expressed in the responder patient subgroup. Ingenuity Pathway Analysis revealed a significant ratio of differentially expressed genes related to cancer, cellular growth and proliferation pathways, and c-Myc network. We demonstrated that high Gng4, c-Myc, Pola1, and Rrm1 mRNA expression levels was a significant prognostic factor for response to treatment in LARC patients (p<0.05). Using this gene set, we were able to establish a new model for predicting the response to CRT in rectal cancer with a sensitivity of 60% and 100% specificity. Our results reflect the value of gene expression profiling to gain insight about the molecular pathways involved in the response to treatment of LARC patients. These findings could be clinically relevant and support the use of mRNA levels when aiming to identify patients who respond to CRT therapy.
Resumo:
The overall survival of patients with pancreatic ductal adenocarcinoma is extremely low. Although gemcitabine is the standard used chemotherapy for this disease, clinical outcomes do not reflect significant improvements, not even when combined with adjuvant treatments. There is an urgent need for prognosis markers to be found. The aim of this study was to analyze the potential value of serum cytokines to find a profile that can predict the clinical outcome in patients with pancreatic cancer and to establish a practical prognosis index that significantly predicts patients' outcomes. We have conducted an extensive analysis of serum prognosis biomarkers using an antibody array comprising 507 human cytokines. Overall survival was estimated using the Kaplan-Meier method. Univariate and multivariate Cox's proportional hazard models were used to analyze prognosis factors. To determine the extent that survival could be predicted based on this index, we used the leave-one-out cross-validation model. The multivariate model showed a better performance and it could represent a novel panel of serum cytokines that correlates to poor prognosis in pancreatic cancer. B7-1/CD80, EG-VEGF/PK1, IL-29, NRG1-beta1/HRG1-beta1, and PD-ECGF expressions portend a poor prognosis for patients with pancreatic cancer and these cytokines could represent novel therapeutic targets for this disease.