2 resultados para Polarization Resistance Measurements


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperuricaemia is one of the components of metabolic syndrome. Both oxidative stress and hyperinsulinism are important variables in the genesis of this syndrome and have a close association with uric acid (UA). We evaluated the effect of an oral glucose challenge on UA concentrations. The study included 656 persons aged 18 to 65 years. Glycaemia, insulin, UA and plasma proteins were measured at baseline and 120 min after an oral glucose tolerance test (OGTT). The baseline sample also included measurements of total cholesterol, triacylglycerol (TAG) and HDL-cholesterol. Insulin resistance was calculated with the homeostasis model assessment. UA levels were significantly lower after the OGTT (281.93 (sd 92.19) v. 267.48 (sd 90.40) micromol/l; P < 0.0001). Subjects with a drop in UA concentrations >40.86 micromol/l (>75th percentile) had higher plasma TAG levels (P = 0.0001), baseline insulin (P = 0.02) and greater insulin resistance (P = 0.034). Women with a difference in plasma concentrations of UA above the 75th percentile had higher baseline insulin levels (P = 0.019), concentration of plasma TAG (P = 0.0001) and a greater insulin resistance index (P = 0.029), whereas the only significant difference in men was the level of TAG. Multiple regression analysis showed that the basal TAG levels, insulin at 120 min, glycaemia at 120 min and waist:hip ratio significantly predicted the variance in the UA difference (r2 0.077). Levels of UA were significantly lower after the OGTT and the individuals with the greatest decrease in UA levels are those who have greater insulin resistance and higher TAG levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT Glucose-dependent insulinotropic peptide (GIP) has a central role in glucose homeostasis through its amplification of insulin secretion; however, its physiological role in adipose tissue is unclear. OBJECTIVE Our objective was to define the function of GIP in human adipose tissue in relation to obesity and insulin resistance. DESIGN GIP receptor (GIPR) expression was analyzed in human sc adipose tissue (SAT) and visceral adipose (VAT) from lean and obese subjects in 3 independent cohorts. GIPR expression was associated with anthropometric and biochemical variables. GIP responsiveness on insulin sensitivity was analyzed in human adipocyte cell lines in normoxic and hypoxic environments as well as in adipose-derived stem cells obtained from lean and obese patients. RESULTS GIPR expression was downregulated in SAT from obese patients and correlated negatively with body mass index, waist circumference, systolic blood pressure, and glucose and triglyceride levels. Furthermore, homeostasis model assessment of insulin resistance, glucose, and G protein-coupled receptor kinase 2 (GRK2) emerged as variables strongly associated with GIPR expression in SAT. Glucose uptake studies and insulin signaling in human adipocytes revealed GIP as an insulin-sensitizer incretin. Immunoprecipitation experiments suggested that GIP promotes the interaction of GRK2 with GIPR and decreases the association of GRK2 to insulin receptor substrate 1. These effects of GIP observed under normoxia were lost in human fat cells cultured in hypoxia. In support of this, GIP increased insulin sensitivity in human adipose-derived stem cells from lean patients. GIP also induced GIPR expression, which was concomitant with a downregulation of the incretin-degrading enzyme dipeptidyl peptidase 4. None of the physiological effects of GIP were detected in human fat cells obtained from an obese environment with reduced levels of GIPR. CONCLUSIONS GIP/GIPR signaling is disrupted in insulin-resistant states, such as obesity, and normalizing this function might represent a potential therapy in the treatment of obesity-associated metabolic disorders.