14 resultados para Nozizeption, Schmerz, Vanilloidrezeptor, Kv1.4, Cannabinoidrezeptor CB1
Resumo:
Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions.
Resumo:
Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization.
Resumo:
To obtain information on cardiovascular morbidity, hypertension control, anemia and mineral metabolism based on the analysis of the baseline characteristics of a large cohort of Spanish patients enrolled in an ongoing prospective, observational, multicenter study of patients with stages 3 and 4 chronic kidney diseases (CKD)
Resumo:
In contrast to some extensively examined food mutagens, for example, aflatoxins, N-nitrosamines and heterocyclic amines, some other food contaminants, in particular polycyclic aromatic hydrocarbons (PAH) and other aromatic compounds, have received less attention. Therefore, exploring the relationships between dietary habits and the levels of biomarkers related to exposure to aromatic compounds is highly relevant. We have investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort the association between dietary items (food groups and nutrients) and aromatic DNA adducts and 4-aminobiphenyl-Hb adducts. Both types of adducts are biomarkers of carcinogen exposure and possibly of cancer risk, and were measured, respectively, in leucocytes and erythrocytes of 1086 (DNA adducts) and 190 (Hb adducts) non-smokers. An inverse, statistically significant, association has been found between DNA adduct levels and dietary fibre intake (P = 0·02), vitamin E (P = 0·04) and alcohol (P = 0·03) but not with other nutrients or food groups. Also, an inverse association between fibre and fruit intake, and BMI and 4-aminobiphenyl-Hb adducts (P = 0·03, 0·04, and 0·03 respectively) was observed. After multivariate regression analysis these inverse correlations remained statistically significant, except for the correlation adducts v. fruit intake. The present study suggests that fibre intake in the usual range can modify the level of DNA or Hb aromatic adducts, but such role seems to be quantitatively modest. Fibres could reduce the formation of DNA adducts in different manners, by diluting potential food mutagens and carcinogens in the gastrointestinal tract, by speeding their transit through the colon and by binding carcinogenic substances.
Resumo:
BACKGROUND This study assesses the validity and reliability of the Spanish version of DN4 questionnaire as a tool for differential diagnosis of pain syndromes associated to a neuropathic (NP) or somatic component (non-neuropathic pain, NNP). METHODS A study was conducted consisting of two phases: cultural adaptation into the Spanish language by means of conceptual equivalence, including forward and backward translations in duplicate and cognitive debriefing, and testing of psychometric properties in patients with NP (peripheral, central and mixed) and NNP. The analysis of psychometric properties included reliability (internal consistency, inter-rater agreement and test-retest reliability) and validity (ROC curve analysis, agreement with the reference diagnosis and determination of sensitivity, specificity, and positive and negative predictive values in different subsamples according to type of NP). RESULTS A sample of 164 subjects (99 women, 60.4%; age: 60.4 +/- 16.0 years), 94 (57.3%) with NP (36 with peripheral, 32 with central, and 26 with mixed pain) and 70 with NNP was enrolled. The questionnaire was reliable [Cronbach's alpha coefficient: 0.71, inter-rater agreement coefficient: 0.80 (0.71-0.89), and test-retest intra-class correlation coefficient: 0.95 (0.92-0.97)] and valid for a cut-off value > or = 4 points, which was the best value to discriminate between NP and NNP subjects. DISCUSSION This study, representing the first validation of the DN4 questionnaire into another language different than the original, not only supported its high discriminatory value for identification of neuropathic pain, but also provided supplemental psychometric validation (i.e. test-retest reliability, influence of educational level and pain intensity) and showed its validity in mixed pain syndromes.
Resumo:
In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.
Resumo:
The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug-withdrawal states, this is an area of relevance to also explore adjuvant treatments for improving these adverse emotional reactions.
Resumo:
Información elaborada a partir de: Proyecto de Humanización de la Atención Perinatal en Andalucía; Plan para la Promoción de la Actividad Física y la Alimentación Equilibrada; Plan Integral de Obesidad Infantil de Andalucía; Programas de Promoción de Salud Bucodental "Sonrisitas" y "Aprende a sonreir"; Plan Integral de Atención a la Accidentabilidad de Andalucía; Plan Integral de Tabaquismo de Andalucía; Plan Integral de Oncología de Andalucía. Publicado en el Portal Web de Ventana Abierta a la familia: www.juntadeandalucia.es/salud/ventanafamilias
Resumo:
Información elaborada a partir de: Proyecto de Humanización de la Atención Perinatal en Andalucía; Plan para la Promoción de la Actividad Física y la Alimentación Equilibrada; Plan Integral de Obesidad Infantil de Andalucía; Programas de Promoción de Salud Bucodental "Sonrisitas" y "Aprende a sonreir"; Plan Integral de Atención a la Accidentabilidad de Andalucía; Plan Integral de Tabaquismo de Andalucía; Plan Integral de Oncología de Andalucía. Publicado en el Portal Web de Ventana Abierta a la familia: www.juntadeandalucia.es/salud/ventanafamilias
Resumo:
Información elaborada a partir de: Proyecto de Humanización de la Atención Perinatal en Andalucía; Plan para la Promoción de la Actividad Física y la Alimentación Equilibrada; Plan Integral de Obesidad Infantil de Andalucía; Programas de Promoción de Salud Bucodental "Sonrisitas" y "Aprende a sonreir"; Plan Integral de Atención a la Accidentabilidad de Andalucía; Plan Integral de Tabaquismo de Andalucía; Plan Integral de Oncología de Andalucía. Publicado en el Portal Web de Ventana Abierta a la familia: www.juntadeandalucia.es/salud/ventanafamilias
Resumo:
Artículos destacados: Buenas prácticas en gestión clínica: Utilidad de la ecografía en rehabilitación. Seguimiento del acuerdo de gestión clínica. Organigrama de funciones de la Unidad de Gestión Clínica. Los antibióticos se acaban, es tiempo de actuar.
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
Resumo:
This is the fourth in a series of articles exploring international trends in health science librarianship in four Southern European countries in the first decade of the 21st century. The invited authors are from Greece, Italy, Spain and Portugal. Future issues will track trends in Latin America and Central Europe.
Resumo:
The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca(2+)-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB(+) 1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin(+) cells (granular and pyramidal neurons), and calretinin(+) and parvalbumin(+) interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin(+) principal cells in the dentate gyrus and CA1, and in the calretinin(+) and parvalbumin(+) interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL(+) terminals were only observed around CA1 calbindin(+) pyramidal cells, CA1/3 calretinin(+) interneurons and CA3 parvalbumin(+) interneurons localized in the pyramidal cell layers. Interestingly, calbindin(+) pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.