5 resultados para Mitochondrial inheritance
Resumo:
Introduction. Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia. Methods. We studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells. Results. We found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy. Conclusions. These findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.
Resumo:
In recent years it has been shown that emotional stress induced by immobilization may change the balance between pro-oxidant and antioxidant factors inducing oxidative damage. On the other hand, contradictory views exist concerning the role of physical activity on redox metabolism. Consequently, the present work was designed to assess the influence of an 8-week moderate swimming training program in emotionally stressed rats. Sixty 1-month-old male albino Wistar rats weighing 125-135 g were used in this experimental study. They were divided into three groups, as Control (lot A; n=20), Stressed (lot B; n=20) and Stressed & Exercised (lot C; n=20). Rats were stressed by placing the animals in a 25 x 7 cm plastic bottle 1 h/day, 5 days a week for 8 weeks. Protein carbonyl content values in liver homogenates were significantly increased in stressed animals (0.58+/-0.02 vs 0.86+/-0.03; p=0.018) which clearly indicated that emotional stress was associated with oxidative stress. Ultrastructural alterations, predominantly mitochondrial swelling and the decrease of cristae number observed by electron microscopy represented direct evidence of membrane injury. The most striking feature of our study was that we also found differences between stressed rats and stressed rats that performed our 8 week training program. Consequently our results highlight the potential benefit of a moderate training program to reduce oxidative damage induced by emotional stress since it attenuated protein oxidation and mitochondrial alterations.
Resumo:
BACKGROUND It is known that mitochondria play an important role in certain cancers (prostate, renal, breast, or colorectal) and coronary disease. These organelles play an essential role in apoptosis and the production of reactive oxygen species; in addition, mtDNA also reveals the history of populations and ancient human migration. All these events and variations in the mitochondrial genome are thought to cause some cancers, including prostate cancer, and also help us to group individuals into common origin groups. The aim of the present study is to analyze the different haplogroups and variations in the sequence in the mitochondrial genome of a southern European population consisting of subjects affected (n = 239) and non-affected (n = 150) by sporadic prostate cancer. METHODOLOGY AND PRINCIPAL FINDINGS Using primer extension analysis and DNA sequencing, we identified the nine major European haplogroups and CR polymorphisms. The frequencies of the haplogroups did not differ between patients and control cohorts, whereas the CR polymorphism T16356C was significantly higher in patients with PC compared to the controls (p = 0.029). PSA, staging, and Gleason score were associated with none of the nine major European haplogroups. The CR polymorphisms G16129A (p = 0.007) and T16224C (p = 0.022) were significantly associated with Gleason score, whereas T16311C (p = 0.046) was linked with T-stage. CONCLUSIONS AND SIGNIFICANCE Our results do not suggest that mtDNA haplogroups could be involved in sporadic prostate cancer etiology and pathogenesis as previous studies performed in middle Europe population. Although some significant associations have been obtained in studying CR polymorphisms, further studies should be performed to validate these results.
Resumo:
BACKGROUND Alternative macrophages (M2) express the cluster differentiation (CD) 206 (MCR1) at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages) gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23). The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6). RESULTS MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005) in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3). AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures. CONCLUSION A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.
Resumo:
BACKGROUND/OBJECTIVES Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats. METHODS/FINDINGS Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations. CONCLUSIONS The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.