3 resultados para Job Related Stress


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Critically ill patients suffer from oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Although ROS/RNS are constantly produced under normal circumstances, critical illness can drastically increase their production. These patients have reduced plasma and intracellular levels of antioxidants and free electron scavengers or cofactors, and decreased activity of the enzymatic system involved in ROS detoxification. The pro-oxidant/antioxidant balance is of functional relevance during critical illness because it is involved in the pathogenesis of multiple organ failure. In this study the objective was to evaluate the relation between oxidative stress in critically ill patients and antioxidant vitamin intake and severity of illness. Methods. Spectrophotometry was used to measure in plasma the total antioxidant capacity and levels of lipid peroxide, carbonyl group, total protein, bilirubin and uric acid at two time points: at intensive care unit (ICU) admission and on day seven. Daily diet records were kept and compliance with recommended dietary allowance (RDA) of antioxidant vitamins (A, C and E) was assessed. Results. Between admission and day seven in the ICU, significant increases in lipid peroxide and carbonyl group were associated with decreased antioxidant capacity and greater deterioration in Sequential Organ Failure Assessment score. There was significantly greater worsening in oxidative stress parameters in patients who received antioxidant vitamins at below 66% of RDA than in those who received antioxidant vitamins at above 66% of RDA. An antioxidant vitamin intake from 66% to 100% of RDA reduced the risk for worsening oxidative stress by 94% (ods ratio 0.06, 95% confidence interval 0.010 to 0.39), regardless of change in severity of illness (Sequential Organ Failure Assessment score). Conclusion. The critical condition of patients admitted to the ICU is associated with worsening oxidative stress. Intake of antioxidant vitamins below 66% of RDA and alteration in endogenous levels of substances with antioxidant capacity are related to redox imbalance in critical ill patients. Therefore, intake of antioxidant vitamins should be carefully monitored so that it is as close as possible to RDA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Temporomandibular disorder (TMD) is a multifactorial syndrome related to a critical period of human life. TMD has been associated with psychological dysfunctions, oxidative state and sexual dimorphism with coincidental occurrence along the pubertal development. In this work we study the association between TMD and genetic polymorphisms of folate metabolism, neurotransmission, oxidative and hormonal metabolism. Folate metabolism, which depends on genes variations and diet, is directly involved in genetic and epigenetic variations that can influence the changes of last growing period of development in human and the appearance of the TMD. METHODS A case-control study was designed to evaluate the impact of genetic polymorphisms above described on TMD. A total of 229 individuals (69% women) were included at the study; 86 were patients with TMD and 143 were healthy control subjects. Subjects underwent to a clinical examination following the guidelines by the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD). Genotyping of 20 Single Nucleotide Polymorphisms (SNPs), divided in two groups, was performed by multiplex minisequencing preceded by multiplex PCR. Other seven genetic polymorphisms different from SNPs (deletions, insertions, tandem repeat, null genotype) were achieved by a multiplex-PCR. A chi-square test was performed to determine the differences in genotype and allelic frequencies between TMD patients and healthy subjects. To estimate TMD risk, in those polymorphisms that shown significant differences, odds ratio (OR) with a 95% of confidence interval were calculated. RESULTS Six of the polymorphisms showed statistical associations with TMD. Four of them are related to enzymes of folates metabolism: Allele G of Serine Hydoxymethyltransferase 1 (SHMT1) rs1979277 (OR = 3.99; 95%CI 1.72, 9.25; p = 0.002), allele G of SHMT1 rs638416 (OR = 2.80; 95%CI 1.51, 5.21; p = 0.013), allele T of Methylentetrahydrofolate Dehydrogenase (MTHFD) rs2236225 (OR = 3.09; 95%CI 1.27, 7.50; p = 0.016) and allele A of Methionine Synthase Reductase (MTRR) rs1801394 (OR = 2.35; 95CI 1.10, 5.00; p = 0.037). An inflammatory oxidative stress enzyme, Gluthatione S-Tranferase Mu-1(GSTM1), null allele (OR = 2.21; 95%CI 1.24, 4.36; p = 0.030) and a neurotransmission receptor, Dopamine Receptor D4 (DRD4), long allele of 48 bp-repeat (OR = 3.62; 95%CI 0.76, 17.26; p = 0.161). CONCLUSIONS Some genetic polymorphisms related to folates metabolism, inflammatory oxidative stress, and neurotransmission responses to pain, has been significantly associated to TMD syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats. METHODS/FINDINGS Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations. CONCLUSIONS The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.