7 resultados para Induced-pluripotent stem (iPS) cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical limb ischemia in diabetic patients is associated with high rates of morbidity and mortality. Suboptimal responses to the available medical and surgical treatments are common in these patients, who also demonstrate limited vascular homeostasis. Neovasculogenesis induced by stem cell therapy could be a useful approach for these patients. Neovasculogenesis and clinical improvement were compared at baseline and at 3 and 12 months after autologous bone marrow-derived mononuclear cell (BMMNC) transplantation in diabetic patients with peripheral artery disease. We conducted a prospective study to evaluate the safety and efficacy of intra-arterial administration of autologous BMMNCs (100-400 × 10(6) cells) in 20 diabetic patients with severe below-the-knee arterial ischemia. Although the time course of clinical effects differed among patients, after 12 months of follow-up all patients presented a notable improvement in the Rutherford-Becker classification, the University of Texas diabetic wound scales, and the Ankle-Brachial Index in the target limb. The clinical outcome was consistent with neovasculogenesis, which was assessed at 3 months by digital subtraction angiography and quantified by MetaMorph software. Unfortunately, local cell therapy in the target limb had no beneficial effect on the high mortality rate in these patients. In diabetic patients with critical limb ischemia, intra-arterial perfusion of BMMNCs is a safe procedure that generates a significant increase in the vascular network in ischemic areas and promotes remarkable clinical improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical limb ischemia in diabetic patients is associated with high rates of morbidity and mortality. Suboptimal responses to the available medical and surgical treatments are common in these patients, who also demonstrate limited vascular homeostasis. Neovasculogenesis induced by stem cell therapy could be a useful approach for these patients. Neovasculogenesis and clinical improvement were compared at baseline and at 3 and 12 months after autologous bone marrow-derived mononuclear cell (BMMNC) transplantation in diabetic patients with peripheral artery disease. We conducted a prospective study to evaluate the safety and efficacy of intra-arterial administration of autologous BMMNCs (100-400 × 10(6) cells) in 20 diabetic patients with severe below-the-knee arterial ischemia. Although the time course of clinical effects differed among patients, after 12 months of follow-up all patients presented a notable improvement in the Rutherford-Becker classification, the University of Texas diabetic wound scales, and the Ankle-Brachial Index in the target limb. The clinical outcome was consistent with neovasculogenesis, which was assessed at 3 months by digital subtraction angiography and quantified by MetaMorph software. Unfortunately, local cell therapy in the target limb had no beneficial effect on the high mortality rate in these patients. In diabetic patients with critical limb ischemia, intra-arterial perfusion of BMMNCs is a safe procedure that generates a significant increase in the vascular network in ischemic areas and promotes remarkable clinical improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Collagen-induced arthritis (CIA), a murine experimental disease model induced by immunization with type II collagen (CII), is used to evaluate novel therapeutic strategies for rheumatoid arthritis. Adult stem cell marker Musashi-1 (Msi1) plays an important role in regulating the maintenance and differentiation of stem/precursor cells. The objectives of this investigation were to perform a morphological study of the experimental CIA model, evaluate the effect of TNFα-blocker (etanercept) treatment, and determine the immunohistochemical expression of Msi1 protein. Methods. CIA was induced in 50 male DBA1/J mice for analyses of tissue and serum cytokine; clinical and morphological lesions in limbs; and immunohistochemical expression of Msi1. Results. Clinically, TNFα-blocker treatment attenuated CIA on day 32 after immunization (P < 0.001). Msi1 protein expression was significantly higher in joints damaged by CIA than in those with no lesions (P < 0.0001) and was related to the severity of the lesions (Spearman's rho = 0.775, P = 0.0001). Conclusions. Treatment with etanercept attenuates osteoarticular lesions in the murine CIA model. Osteoarticular expression of Msi1 protein is increased in joints with CIA-induced lesion and absent in nonlesioned joints, suggesting that this protein is expressed when the lesion is produced in order to favor tissue repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells which are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and non-adherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4 and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent, hematopoietic, mesenchymal and endothelial specific markers in vitro and can undergo osteogenic differentiation in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.