8 resultados para In Vitro Models of Toxicity Testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The agar dilution, broth microdilution, and disk diffusion methods were compared to determine the in vitro susceptibility of 428 extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin. Fosfomycin showed very high activity against all ESBL-producing strains. Excellent agreement between the three susceptibility methods was found for E. coli, whereas marked discrepancies were observed for K. pneumoniae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory processes described in Parkinson’s disease (PD) and its animal models appear to be important in the progression of the pathogenesis, or even a triggering factor. Here we review that peripheral inflammation enhances the degeneration of the nigrostriatal dopaminergic system induced by different insults; different peripheral inflammations have been used, such as IL-1β and the ulcerative colitis model, as well as insults to the dopaminergic system such as 6-hydroxydopamine or lipopolysaccharide. In all cases, an increased loss of dopaminergic neurons was described; inflammation in the substantia nigra increased, displaying a great activation of microglia along with an increase in the production of cytokines such as IL-1β and TNF-α. Increased permeability or disruption of the BBB, with overexpression of the ICAM-1 adhesion molecule and infiltration of circulating monocytes into the substantia nigra, is also involved, since the depletion of circulating monocytes prevents the effects of peripheral inflammation. Data are reviewed in relation to epidemiological studies of PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gluten content from barley, rye, wheat and in certain oat varieties, must be avoid in individuals with celiac disease. In most of the Western countries, the level of gluten content in food to be considered as gluten-free products is below 20 parts per million measured by ELISA based on specific anti-gluten peptide antibody. However, in beverages or food suffering complex hydrolytic processes as beers, the relative proportion of reactive peptides for celiac patients and the analytical techniques may differ, because of the diversity of the resulting peptide populations after fermentations. A beer below 20 parts per million of gluten but yet detectable levels of gluten peptides by anti-gliadin 33-mer antibodies (G12 and A1) was analyzed. We identified and characterized the relevant peptides for either antibody recognition or immunoactivity in celiac patients. The beer was fractionated by HPLC. The relative reactivity of the different HPLC fractions to the G12/A1 antibodies correlated to the reactivity of peripheral blood mononuclear cells isolated from 14 celiac individuals. Peptides from representative fractions classified according to the relative reactivity to G12/A1 antibodies were identified by mass spectrometry. The beer peptides containing sequences with similarity to those of previously described G12 and A1 epitopes were synthesized and confirmed significant reactivity for the antibodies. The most reactive peptides for G12/A1 also confirmed the highest immunogenicity by peripheral blood mononuclear cell activation and interferon γ production from celiac patients. We concluded that preparative HPLC combined with anti-gliadin 33-mer G12/A1 antibodies were very sensitive and specific methods to analyze the relevant immunogenic peptides in hydrolyzed gluten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Protein-bound polysaccharide (PSK) is derived from the CM-101 strain of the fungus Coriolus versicolor and has shown anticancer activity in vitro and in in vivo experimental models and human cancers. Several randomized clinical trials have demonstrated that PSK has great potential in adjuvant cancer therapy, with positive results in the adjuvant treatment of gastric, esophageal, colorectal, breast and lung cancers. These studies have suggested the efficacy of PSK as an immunomodulator of biological responses. The precise molecular mechanisms responsible for its biological activity have yet to be fully elucidated. METHODS The in vitro cytotoxic anti-tumour activity of PSK has been evaluated in various tumour cell lines derived from leukaemias, melanomas, fibrosarcomas and cervix, lung, pancreas and gastric cancers. Tumour cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of PSK on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in PSK-treated cells. RESULTS PSK showed in vitro inhibition of tumour cell proliferation as measured by BrdU incorporation and viable cell count. The inhibition ranged from 22 to 84%. Inhibition mechanisms were identified as cell cycle arrest, with cell accumulation in G0/G1 phase and increase in apoptosis and caspase-3 expression. These results indicate that PSK has a direct cytotoxic activity in vitro, inhibiting tumour cell proliferation. In contrast, PSK shows a synergistic effect with IL-2 that increases PBL proliferation. CONCLUSION These results indicate that PSK has cytotoxic activity in vitro on tumour cell lines. This new cytotoxic activity of PSK on tumour cells is independent of its previously described immunomodulatory activity on NK cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonimmediate drug hypersensitivity reactions (DHRs) are difficult to manage in daily clinical practice, mainly owing to their heterogeneous clinical manifestations and the lack of selective biological markers. In vitro methods are necessaryto establish a diagnosis, especially given the low sensitivity of skin tests and the inherent risks of drug provocation testing. In vitro evaluation of nonimmediate DHRs must include approaches that can be applied during the different phases of the reaction. During the acute phase, monitoring markers in both skin and peripheral blood helps to discriminate between immediate and nonimmediate DHRs with cutaneous responses and to distinguish between reactions that, although they present similar clinical symptoms, are produced by different immunological mechanisms and therefore have a different treatment and prognosis. During the resolution phase, in vitro testing is used to detect the response of T cells to drug stimulation; however, this approach has certain limitations, such as the lack of validated studies assessing sensitivity. Moreover, in vitro tests indicate an immune response that is not always related to a DHR. In this review, members of the Immunology and Drug Allergy Committee of the Spanish Society of Allergy and Clinical Immunology (SEAIC) provide an overview of the most widely used in vitro tests for evaluating nonimmediate DHRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.