9 resultados para Fatigue Damage
Resumo:
Inflammatory processes described in Parkinson’s disease (PD) and its animal models appear to be important in the progression of the pathogenesis, or even a triggering factor. Here we review that peripheral inflammation enhances the degeneration of the nigrostriatal dopaminergic system induced by different insults; different peripheral inflammations have been used, such as IL-1β and the ulcerative colitis model, as well as insults to the dopaminergic system such as 6-hydroxydopamine or lipopolysaccharide. In all cases, an increased loss of dopaminergic neurons was described; inflammation in the substantia nigra increased, displaying a great activation of microglia along with an increase in the production of cytokines such as IL-1β and TNF-α. Increased permeability or disruption of the BBB, with overexpression of the ICAM-1 adhesion molecule and infiltration of circulating monocytes into the substantia nigra, is also involved, since the depletion of circulating monocytes prevents the effects of peripheral inflammation. Data are reviewed in relation to epidemiological studies of PD.
Resumo:
Background. DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity.
Resumo:
INTRODUCTION Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. METHODS Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. RESULTS Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. CONCLUSION After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients.
Resumo:
BACKGROUND. Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. METHODS. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. RESULTS. Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. CONCLUSIONS. A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe subcutaneous late toxicity after clinical treatment at high radiation doses in our series. However, due to the small sample size, other prospective studies with higher number of patients are needed to validate these results.
Resumo:
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.
Resumo:
The purpose of the present paper was to evaluate the effects of an 8-week multimodal program focused on core stability exercises and recovery massage with DVD support for a 6-month period in physical and psychological outcomes in breast cancer survivors. A randomized controlled clinical trial was performed. Seventy-eight (n = 78) breast cancer survivors were assigned to experimental (core stability exercises plus massage-myofascial release) and control (usual health care) groups. The intervention period was 8 weeks. Mood state, fatigue, trunk curl endurance, and leg strength were determined at baseline, after the last treatment session, and at 6 months of followup. Immediately after treatment and at 6 months, fatigue, mood state, trunk curl endurance, and leg strength exhibited greater improvement within the experimental group compared to placebo group. This paper showed that a multimodal program focused on core stability exercises and massage reduced fatigue, tension, depression, and improved vigor and muscle strength after intervention and 6 months after discharge.
Resumo:
BACKGROUND AND AIMS Several studies have reported that a significant number of HIV patients not co-infected with HCV/HBV develop liver damage of uncertain origin (LDUO). The objective of our study was to evaluate the incidence of and risk factors for the development of LDUO in HIV infected patients not co-infected with HCV/HBV. METHODS Prospective longitudinal study that included HIV-infected patients free of previous liver damage and viral hepatitis B or C co-infections. Patients were followed up at 6-monthly intervals. Liver stiffness was measured at each visit. Abnormal liver stiffness (ALS) was defined as a liver stiffness value greater than 7.2 kPa at two consecutive measurements. For patients who developed ALS, a protocol was followed to diagnose the cause of liver damage. Those patients who could not be diagnosed with any specific cause of liver disease were diagnosed as LDUO and liver biopsy was proposed. RESULTS 210 patients matched the inclusion criteria and were included. 198 patients completed the study. After a median (Q1-Q3) follow-up of 18 (IQR 12-26) months, 21 patients (10.6%) developed ALS. Of these, fifteen patients were diagnosed as LDUO. The incidence of LDUO was 7.64 cases/100 patient-years. Histological studies were performed on ten (66.6%) patients and all showed liver steatosis. A higher HOMA-IR value and body mass index were independently associated with the development of LDUO. CONCLUSION We found a high incidence of LDUO in HIV-infected patients associated with metabolic risk factors. The leading cause of LDUO in our study was non-alcoholic fatty liver disease.
Resumo:
INTRODUCTION: Physical training programmes are based on provoking transitory states of fatigue in order to induce super compensation by the biological systems involved in the activity, in order to improve the athlete's medium-long term performance. The administration of nutritional supplements with antioxidant and immunomodulatory properties, such as Phlebodium decumanum and coenzyme Q10, can be a very advantageous means of achieving recovery from the inflammation and tissue damage caused by the stress of prolonged, intense exercise. METHODOLOGY: An experimental, longitudinal, double- blind experiment was conducted, with three randomised groups obtained from a sample of 30 male volleyball players (aged 22-32 years) at the University of Granada, with a high level of training (17 hours a week during the 6 months preceding the study). The effects were then evaluated of a month-long physical training programme, common to all the study groups, associated with the simultaneous administration of the following nutritional supplements: Phlebodium decumanum (4 capsules of 400 mg/capsule, daily), Experimental Group 1; Phlebodium decumanum (same dose andchedule as Group 1) plus coenzyme Q10 (4 capsules of 30 mg/ capsule, daily), Experimental Group 2; a placebo substance, Control Group. The following dependent blood variables were examined to assess the effects of the intervention on the basal immune and endocrine-metabolic profile: cortisol and interleukin-6, both related to the axis of exercise-induced stress; and lactic acid and ammonium, related essentially to the anaerobic metabolism of energy. RESULTS: All the study groups presented favourable adaptive changes with respect to the endocrine-metabolic and immune profile, as reflected by a significant decrease in the post-test concentrations of cortisol, interleukin 6, lactic acid and ammonium, compared to the values recorded before the physical activity with/without nutritional supplement, per protocol. The groups that achieved the most favourable profile were those which had received nutritional supplementation, rather than the placebo, and among the former, those which had received the double- strength supplement with Phlebodium decumanum plus coenzyme Q10. CONCLUSIONS: The intake of Phlebodium decumanum plus coenzyme Q10 for 4 weeks produced protective effects on the endocrine-metabolic and immune profile, which we attribute to the immunomodulatory and antioxidant properties of these substances, which are highly beneficial not only in terms of delaying fatigue and improving athletic performance, but also in reducing the risk of injuries associated with high intensity exercise.
Resumo:
The electrophoresis of cells in alkaline medium (comet assay) is a valid technique for quantifying DNA damage in patients with ataxia-telangiectasia and their relatives.