105 resultados para Luján Pérez, José (1756-1815)
Resumo:
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.
Resumo:
BACKGROUND Ovarian carcinoma is the most important cause of gynecological cancer-related mortality in Western societies. Despite the improved median overall survival in patients receiving chemotherapy regimens such as paclitaxel and carboplatin combination, relapse still occurs in most advanced diseased patients. Increased angiogenesis is associated with rapid recurrence and decreased survival in ovarian cancer. This study was planned to identify an angiogenesis-related gene expression profile with prognostic value in advanced ovarian carcinoma patients. METHODOLOGY/PRINCIPAL FINDINGS RNAs were collected from formalin-fixed paraffin-embedded samples of 61 patients with III/IV FIGO stage ovarian cancer who underwent surgical cytoreduction and received a carboplatin plus paclitaxel regimen. Expression levels of 82 angiogenesis related genes were measured by quantitative real-time polymerase chain reaction using TaqMan low-density arrays. A 34-gene-profile which was able to predict the overall survival of ovarian carcinoma patients was identified. After a leave-one-out cross validation, the profile distinguished two groups of patients with different outcomes. Median overall survival and progression-free survival for the high risk group was 28.3 and 15.0 months, respectively, and was not reached by patients in the low risk group at the end of follow-up. Moreover, the profile maintained an independent prognostic value in the multivariate analysis. The hazard ratio for death was 2.3 (95% CI, 1.5 to 3.2; p<0.001). CONCLUSIONS/SIGNIFICANCE It is possible to generate a prognostic model for advanced ovarian carcinoma based on angiogenesis-related genes using formalin-fixed paraffin-embedded samples. The present results are consistent with the increasing weight of angiogenesis genes in the prognosis of ovarian carcinoma.
Resumo:
BACKGROUND ErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors. RESULTS Our results show that both Delta9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2. CONCLUSIONS Taken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer.
Resumo:
CONTEXT Six-transmembrane protein of prostate 2 (STAMP2) is a counter-regulator of inflammation and insulin resistance according to findings in mice. However, there have been contradictory reports in humans. OBJECTIVE We aimed to explore STAMP2 in association with inflammatory and metabolic status of human obesity. DESIGN, PATIENTS, AND METHODS STAMP2 gene expression was analyzed in adipose tissue samples (171 visceral and 67 sc depots) and during human preadipocyte differentiation. Human adipocytes were treated with macrophage-conditioned medium, TNF-α, and rosiglitazone. RESULTS In visceral adipose tissue, STAMP2 gene expression was significantly decreased in obese subjects, mainly in obese subjects with type 2 diabetes. STAMP2 gene expression and protein were significantly and inversely associated with obesity phenotype measures (body mass index, waist, hip, and fat mass) and obesity-associated metabolic disturbances (systolic blood pressure and fasting glucose). In addition, STAMP2 gene expression was positively associated with lipogenic (FASN, ACC1, SREBP1, THRSP14, TRα, and TRα1), CAV1, IRS1, GLUT4, and CD206 gene expression. In sc adipose tissue, STAMP2 gene expression was not associated with metabolic parameters. In both fat depots, STAMP2 gene expression in stromovascular cells was significantly higher than in mature adipocytes. STAMP2 gene expression was significantly increased during the differentiation process in parallel to adipogenic genes, being increased in preadipocytes derived from lean subjects. Macrophage-conditioned medium (25%) and TNF-α (100 ng/ml) administration increased whereas rosiglitazone (2 μM) decreased significantly STAMP2 gene expression in human differentiated adipocytes. CONCLUSIONS Decreased STAMP2 expression (mRNA and protein) might reflect visceral adipose dysfunction in subjects with obesity and type 2 diabetes.
Resumo:
Distribution of Toscana virus (TOSV) is evolving with climate change, and pathogenicity may be higher in nonexposed populations outside areas of current prevalence (Mediterranean Basin). To characterize genetic diversity of TOSV, we determined the coding sequences of isolates from Spain and France. TOSV is more diverse than other well-studied phleboviruses (e.g.,Rift Valley fever virus).
Resumo:
BACKGROUND FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. OBJECTIVE In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. METHODS The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. RESULTS In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. CONCLUSION The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.
Resumo:
BACKGROUND Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. METHODS Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. RESULTS We found no evidence of KRAS oncogenic mutations in all analyzed tumors. CONCLUSIONS This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases.
Resumo:
Pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in the placenta, where it works as an autocrine hormone. In this work, we demonstrated that human chorionic gonadotropin (hCG) added to JEG-3 cell line or to placental explants induces endogenous leptin expression. We also found that hCG increased cAMP intracellular levels in BeWo cells in a dose-dependent manner, stimulated cAMP response element (CRE) activity and the cotransfection with an expression plasmid of a dominant negative mutant of CREB caused a significant inhibition of hCG stimulation of leptin promoter activity. These results demonstrate that hCG indeed activates cAMP/PKA pathway, and that this pathway is involved in leptin expression. Nevertheless, we found leptin induction by hCG is dependent on cAMP levels. Treatment with (Bu)(2)cAMP in combination with low and non stimulatory hCG concentrations led to an increase in leptin expression, whereas stimulatory concentrations showed the opposite effect. We found that specific PKA inhibition by H89 caused a significant increase of hCG leptin induction, suggesting that probably high cAMP levels might inhibit hCG effect. It was found that hCG enhancement of leptin mRNA expression involved the MAPK pathway. In this work, we demonstrated that hCG leptin induction through the MAPK signaling pathway is inhibited by PKA. We observed that ERK1/2 phosphorylation increased when hCG treatment was combined with H89. In view of these results, the involvement of the alternative cAMP/Epac signaling pathway was studied. We observed that a cAMP analogue that specifically activates Epac (CPT-OMe) stimulated leptin expression by hCG. In addition, the overexpression of Epac and Rap1 proteins increased leptin promoter activity and enhanced hCG. In conclusion, we provide evidence suggesting that hCG induction of leptin gene expression in placenta is mediated not only by activation of the MAPK signaling pathway but also by the alternative cAMP/Epac signaling pathway.
Resumo:
Background: Mortality from invasive meningococcal disease (IMD) has remained stable over the last thirty years and it is unclear whether pre-hospital antibiotherapy actually produces a decrease in this mortality. Our aim was to examine whether pre-hospital oral antibiotherapy reduces mortality from IMD, adjusting for indication bias. Methods: A retrospective analysis was made of clinical reports of all patients (n = 848) diagnosed with IMD from 1995 to 2000 in Andalusia and the Canary Islands, Spain, and of the relationship between the use of pre-hospital oral antibiotherapy and mortality. Indication bias was controlled for by the propensity score technique, and a multivariate analysis was performed to determine the probability of each patient receiving antibiotics, according to the symptoms identified before admission. Data on in-hospital death, use of antibiotics and demographic variables were collected. A logistic regression analysis was then carried out, using death as the dependent variable, and prehospital antibiotic use, age, time from onset of symptoms to parenteral antibiotics and the propensity score as independent variables. Results: Data were recorded on 848 patients, 49 (5.72%) of whom died. Of the total number of patients, 226 had received oral antibiotics before admission, mainly betalactams during the previous 48 hours. After adjusting the association between the use of antibiotics and death for age, time between onset of symptoms and in-hospital antibiotic treatment, pre-hospital oral antibiotherapy remained a significant protective factor (Odds Ratio for death 0.37, 95% confidence interval 0.15–0.93). Conclusion: Pre-hospital oral antibiotherapy appears to reduce IMD mortality.
Resumo:
BACKGROUND Granulocyte colony-stimulating factors (G-CSFs) have been shown to help prevent febrile neutropenia in certain subgroups of cancer patients undergoing chemotherapy, but their role in treating febrile neutropenia is controversial. The purpose of our study was to evaluate-in a prospective multicenter randomized clinical trial-the efficacy of adding G-CSF to broad-spectrum antibiotic treatment of patients with solid tumors and high-risk febrile neutropenia. METHODS A total of 210 patients with solid tumors treated with conventional-dose chemotherapy who presented with fever and grade IV neutropenia were considered to be eligible for the trial. They met at least one of the following high-risk criteria: profound neutropenia (absolute neutrophil count <100/mm(3)), short latency from previous chemotherapy cycle (<10 days), sepsis or clinically documented infection at presentation, severe comorbidity, performance status of 3-4 (Eastern Cooperative Oncology Group scale), or prior inpatient status. Eligible patients were randomly assigned to receive the antibiotics ceftazidime and amikacin, with or without G-CSF (5 microg/kg per day). The primary study end point was the duration of hospitalization. All P values were two-sided. RESULTS Patients randomly assigned to receive G-CSF had a significantly shorter duration of grade IV neutropenia (median, 2 days versus 3 days; P = 0.0004), antibiotic therapy (median, 5 days versus 6 days; P = 0.013), and hospital stay (median, 5 days versus 7 days; P = 0.015) than patients in the control arm. The incidence of serious medical complications not present at the initial clinical evaluation was 10% in the G-CSF group and 17% in the control group (P = 0.12), including five deaths in each study arm. The median cost of hospital stay and the median overall cost per patient admission were reduced by 17% (P = 0.01) and by 11% (P = 0.07), respectively, in the G-CSF arm compared with the control arm. CONCLUSIONS Adding G-CSF to antibiotic therapy shortens the duration of neutropenia, reduces the duration of antibiotic therapy and hospitalization, and decreases hospital costs in patients with high-risk febrile neutropenia.
Resumo:
OBJECTIVE To assess the association between consumption of fried foods and risk of coronary heart disease. DESIGN Prospective cohort study. SETTING Spanish cohort of the European Prospective Investigation into Cancer and Nutrition. PARTICIPANTS 40 757 adults aged 29-69 and free of coronary heart disease at baseline (1992-6), followed up until 2004. MAIN OUTCOME MEASURES Coronary heart disease events and vital status identified by record linkage with hospital discharge registers, population based registers of myocardial infarction, and mortality registers. RESULTS During a median follow-up of 11 years, 606 coronary heart disease events and 1135 deaths from all causes occurred. Compared with being in the first (lowest) quarter of fried food consumption, the multivariate hazard ratio of coronary heart disease in the second quarter was 1.15 (95% confidence interval 0.91 to 1.45), in the third quarter was 1.07 (0.83 to 1.38), and in the fourth quarter was 1.08 (0.82 to 1.43; P for trend 0.74). The results did not vary between those who used olive oil for frying and those who used sunflower oil. Likewise, no association was observed between fried food consumption and all cause mortality: multivariate hazard ratio for the highest versus the lowest quarter of fried food consumption was 0.93 (95% confidence interval 0.77 to 1.14; P for trend 0.98). CONCLUSION In Spain, a Mediterranean country where olive or sunflower oil is used for frying, the consumption of fried foods was not associated with coronary heart disease or with all cause mortality.
Resumo:
Lymphocytic choriomeningitis virus (LCMV) was detected in 2 patients with acute meningitis in southern Spain within a 3-year period. Although the prevalence of LCMV infection was low (2 [1.3%] of 159 meningitis patients), it represents 2.9% of all pathogens detected. LCMV is a noteworthy agent of neurologic illness in immunocompetent persons.
Resumo:
The epithelial to mesenchymal transition (EMT) contributes to tumor invasion and metastasis in a variety of cancer types. In human breast cancer, gene expression studies have determined that basal-B/claudin-low and metaplastic cancers exhibit EMT-related characteristics, but the molecular mechanisms underlying this observation are unknown. As the family of miR-200 microRNAs has been shown to regulate EMT in normal tissues and cancer, here we evaluated whether the expression of the miR-200 family (miR-200f) and their epigenetic state correlate with EMT features in human breast carcinomas. We analyzed by qRT-PCR the expression of miR-200f members and various EMT-transcriptional inducers in a series of 70 breast cancers comprising an array of phenotypic subtypes: estrogen receptor positive (ER+), HER2 positive (HER2+), and triple negative (TN), including a subset of metaplastic breast carcinomas (MBCs) with sarcomatous (homologous or heterologous) differentiation. No MBCs with squamous differentiation were included. The DNA methylation status of miR-200f loci in tumor samples were inspected using Sequenom MassArray® MALDI-TOF platform. We also used two non-tumorigenic breast basal cell lines that spontaneously undergo EMT to study the modulation of miR-200f expression during EMT in vitro. We demonstrate that miR-200f is strongly decreased in MBCs compared with other cancer types. TN and HER2+ breast cancers also exhibited lower miR-200f expression than ER+ tumors. Significantly, the decreased miR-200f expression found in MBCs is accompanied by an increase in the expression levels of EMT-transcriptional inducers, and hypermethylation of the miR-200c-141 locus. Similar to tumor samples, we demonstrated that downregulation of miR-200f and hypermethylation of the miR-200c-141 locus, together with upregulation of EMT-transcriptional inducers also occur in an in vitro cellular model of spontaneous EMT. Thus, the expression and methylation status of miR-200f could be used as hypothetical biomarkers to assess the occurrence of EMT in breast cancer.
Resumo:
This study was supported in part by project 05/305, Junta de Andalucía, Spain