24 resultados para endogenous sulphydryls


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug-withdrawal states, this is an area of relevance to also explore adjuvant treatments for improving these adverse emotional reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Multiple Sclerosis (MS) is an autoimmune demyelinating disease that occurs more frequently in women than in men. Multiple Sclerosis Associated Retrovirus (MSRV) is a member of HERV-W, a multicopy human endogenous retroviral family repeatedly implicated in MS pathogenesis. MSRV envelope protein is elevated in the serum of MS patients and induces inflammation and demyelination but, in spite of this pathogenic potential, its exact genomic origin and mechanism of generation are unknown. A possible link between the HERV-W copy on chromosome Xq22.3, that contains an almost complete open reading frame, and the gender differential prevalence in MS has been suggested. RESULTS MSRV transcription levels were higher in MS patients than in controls (U-Mann-Whitney; p = 0.004). Also, they were associated with the clinical forms (Spearman; p = 0.0003) and with the Multiple Sclerosis Severity Score (MSSS) (Spearman; p = 0.016). By mapping a 3 kb region in Xq22.3, including the HERV-W locus, we identified three polymorphisms: rs6622139 (T/C), rs6622140 (G/A) and rs1290413 (G/A). After genotyping 3127 individuals (1669 patients and 1458 controls) from two different Spanish cohorts, we found that in women rs6622139 T/C was associated with MS susceptibility: [χ2; p = 0.004; OR (95% CI) = 0.50 (0.31-0.81)] and severity, since CC women presented lower MSSS scores than CT (U-Mann-Whitney; p = 0.039) or TT patients (U-Mann-Whitney; p = 0.031). Concordantly with the susceptibility conferred in women, rs6622139*T was associated with higher MSRV expression (U-Mann-Whitney; p = 0.003). CONCLUSIONS Our present work supports the hypothesis of a direct involvement of HERV-W/MSRV in MS pathogenesis, identifying a genetic marker on chromosome X that could be one of the causes underlying the gender differences in MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is downregulated in the presence of leptin under serum deprivation. On the other hand, we determined that leptin reduced the phosphorylation of Ser-46 p53 that plays a pivotal role for apoptotic signaling by p53. Our data suggest that the observed anti-apoptotic effect of leptin in placenta is in part mediated by the p53 pathway. In conclusion, we provide evidence that demonstrates that leptin is a trophic factor for trophoblastic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high alcohol consumption, smoking, obesity, and diabetes, there is incomplete etiologic understanding of the disease and little progress in identification of early risk biomarkers. METHODS To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort. RESULTS A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis. CONCLUSION Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystatin C is considered the most important physiological inhibitor of endogenous cysteine proteases; the role of cystatin C is believed to be to modulate the activity of proteases secreted or released from damaged cells or in the process of necrosis, therefore cystatins being fundamental regulatory processes and a potential prevention of local proteolytic damage. Antiphospholipid antibodies are used to clarify the diagnosis of diseases like multiple sclerosis (MS) and other pathologies could present similar symptoms or paraclinical findings. The objective of the present work is to analyze the concentration of cystatin C and the presence or absence of antiphospholipid antibodies in patients diagnosed with relapsing remitting multiple sclerosis (RRMS) as markers of demyelization. This work was carried out jointly by the Vascular Risk Laboratory, the Laboratory of Autoimmunity and Multiple Sclerosis Unit, Hospital Universitario Virgen Macarena in Seville in one year. Two types of people were selected: Group 1 (n = 30) RRMS group and a control group, n = 30. Cystatin C and antiphospholipid antibodies IgG and IgM, IgG and IgM anticardiolipin, β2 glycoprotein IgG and IgM were determined. Patients showed negative titers of antiphospholipid antibodies IgG and IgM, IgG and IgM anticardiolipin, β2 glycoprotein IgG and IgM. Cystatin C concentration is lower in the group of patients diagnosed with MS, which could give rise to a decrease in the modulation of endogenous cysteine proteases. This would exacerbate the progress of demyelization in MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the induction of oxidative stress as the mechanism of action of many antitumor drugs is acquiring an increasing interest. In such cases, the antitumor therapy success may be conditioned by the antioxidants present in our own body, which can be synthesized de novo (endogenous) or incorporated through the diet and nutritional supplements (exogenous). In this paper, we have reviewed different aspects of antioxidants, including their classification, natural sources, importance in diet, consumption of nutritional supplements, and the impact of antioxidants on health. Moreover, we have focused especially on the study of the interaction between antioxidants and antitumor therapy, considering both radiotherapy and chemotherapy. In this regard, we found that the convenience of administration of antioxidants during cancer treatment still remains a very controversial issue. In general terms, antioxidants could promote or suppress the effectiveness of antitumor treatment and even protect healthy tissues against damage induced by oxidative stress. The effects may depend on many factors discussed in the paper. These factors should be taken into consideration in order to achieve precise nutritional recommendations for patients. The evidence at the moment suggests that the supplementation or restriction of exogenous antioxidants during cancer treatment, as appropriate, could contribute to improving its efficiency.