5 resultados para correction methods
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
Least Squares estimators are notoriously known to generate sub-optimal exercise decisions when determining the optimal stopping time. The consequence is that the price of the option is underestimated. We show how variance reduction methods can be implemented to obtain more accurate option prices. We also extend the Longsta¤ and Schwartz (2001) method to price American options under stochastic volatility. These are two important contributions that are particularly relevant for practitioners. Finally, we extend the Glasserman and Yu (2004b) methodology to price Asian options and basket options.
Resumo:
We develop methods for Bayesian inference in vector error correction models which are subject to a variety of switches in regime (e.g. Markov switches in regime or structural breaks). An important aspect of our approach is that we allow both the cointegrating vectors and the number of cointegrating relationships to change when the regime changes. We show how Bayesian model averaging or model selection methods can be used to deal with the high-dimensional model space that results. Our methods are used in an empirical study of the Fisher effect.
Resumo:
We develop methods for Bayesian inference in vector error correction models which are subject to a variety of switches in regime (e.g. Markov switches in regime or structural breaks). An important aspect of our approach is that we allow both the cointegrating vectors and the number of cointegrating relationships to change when the regime changes. We show how Bayesian model averaging or model selection methods can be used to deal with the high-dimensional model space that results. Our methods are used in an empirical study of the Fisher e ffect.
Resumo:
Employing an endogenous growth model with human capital, this paper explores how productivity shocks in the goods and human capital producing sectors contribute to explaining aggregate fluctuations in output, consumption, investment and hours. Given the importance of accounting for both the dynamics and the trends in the data not captured by the theoretical growth model, we introduce a vector error correction model (VECM) of the measurement errors and estimate the model’s posterior density function using Bayesian methods. To contextualize our findings with those in the literature, we also assess whether the endogenous growth model or the standard real business cycle model better explains the observed variation in these aggregates. In addressing these issues we contribute to both the methods of analysis and the ongoing debate regarding the effects of innovations to productivity on macroeconomic activity.