9 resultados para VARIABLE LENGTH MARKOV CHAINS
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
This paper considers the instrumental variable regression model when there is uncertainty about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very exible and can be easily adapted to analyze any of the di¤erent priors that have been proposed in the Bayesian instrumental variables literature. We show how to calculate the probability of any relevant restriction (e.g. the posterior probability that over-identifying restrictions hold) and discuss diagnostic checking using the posterior distribution of discrepancy vectors. We illustrate our methods in a returns-to-schooling application.
Resumo:
This paper develops stochastic search variable selection (SSVS) for zero-inflated count models which are commonly used in health economics. This allows for either model averaging or model selection in situations with many potential regressors. The proposed techniques are applied to a data set from Germany considering the demand for health care. A package for the free statistical software environment R is provided.
Resumo:
The Scottish Parliament has the authority to make a balanced-budget expansion or contraction in public expenditure, funded by corresponding local changes in the basic rate of income tax of up to 3p in the pound. This fiscal adjustment is known as the Scottish Variable Rate of income tax, though it has never, as yet, been used. In this paper we attempt to identify the impact on aggregate economic activity in Scotland of implementing these devolved fiscal powers. This is achieved through theoretical analysis and simulation using a Computable General Equilibrium (CGE) model for Scotland. This analysis generalises the conventional Keynesian model so that negative balanced-budget multipliers values are possible, reflecting a regional “inverted Haavelmo effect”. Key parameters determining the aggregate economic impact are the extent to which the Scottish Government create local amenities valuable to the Scottish population and the extent to which this is incorporated into local wage bargaining.
Resumo:
This paper investigates underlying changes in the UK economy over the past thirtyfive years using a small open economy DSGE model. Using Bayesian analysis, we find UK monetary policy, nominal price rigidity and exogenous shocks, are all subject to regime shifting. A model incorporating these changes is used to estimate the realised monetary policy and derive the optimal monetary policy for the UK. This allows us to assess the effectiveness of the realised policy in terms of stabilising economic fluctuations, and, in turn, provide an indication of whether there is room for monetary authorities to further improve their policies.
Resumo:
We study a business cycle model in which a benevolent fiscal authority must determine the optimal provision of government services, while lacking credibility, lump-sum taxes, and the ability to bond finance deficits. Households and the fiscal authority have risk sensitive preferences. We find that outcomes are affected importantly by the household's risk sensitivity, but not by the fiscal authority's. Further, while household risk-sensitivity induces a strong precautionary saving motive, which raises capital and lowers the return on assets, its effects on fluctuations and the business cycle are generally small, although more pronounced for negative shocks. Holding the stochastic steady state constant, increases in household risk-sensitivity lower the risk-free rate and raise the return on equity, increasing the equity premium. Finally, although risk-sensitivity has little effect on the provision of government services, it does cause the fiscal authority to lower the income tax rate. An additional contribution of this paper is to present a method for computing Markov-perfect equilibria in models where private agents and the government are risk-sensitive decisionmakers.
Resumo:
Vector Autoregressive Moving Average (VARMA) models have many theoretical properties which should make them popular among empirical macroeconomists. However, they are rarely used in practice due to over-parameterization concerns, difficulties in ensuring identification and computational challenges. With the growing interest in multivariate time series models of high dimension, these problems with VARMAs become even more acute, accounting for the dominance of VARs in this field. In this paper, we develop a Bayesian approach for inference in VARMAs which surmounts these problems. It jointly ensures identification and parsimony in the context of an efficient Markov chain Monte Carlo (MCMC) algorithm. We use this approach in a macroeconomic application involving up to twelve dependent variables. We find our algorithm to work successfully and provide insights beyond those provided by VARs.
Resumo:
Time-inconsistency is an essential feature of many policy problems (Kydland and Prescott, 1977). This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler-equations, and parameterized shadow prices. In the context of a business cycle model in which a scal authority chooses government spending and income taxation optimally, while lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive scal authority and/or inequality constraints on government spending. We show that the risk-sensitive scal authority lowers government spending and income-taxation, reducing the disincentive households face to accumulate wealth.