34 resultados para Models, Econometric
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
This paper reports on one of the first empirical attempts to investigate small firm growth and survival, and their determinants, in the Peoples’ Republic of China. The work is based on field work evidence gathered from a sample of 83 Chinese private firms (mainly SMEs) collected initially by face-to-face interviews, and subsequently by follow-up telephone interviews a year later. We extend the models of Gibrat (1931) and Jovanovic (1982), which traditionally focus on size and age alone (e.g. Brock and Evans, 1986), to a ‘comprehensive’ growth model with two types of additional explanatory variables: firm-specific (e.g. business planning); and environmental (e.g. choice of location). We estimate two econometric models: a ‘basic’ age-size-growth model; and a ‘comprehensive’ growth model, using Heckman’s two-step regression procedure. Estimation is by log-linear regression on cross-section data, with corrections for sample selection bias and heteroskedasticity. Our results refute a pure Gibrat model (but support a more general variant) and support the learning model, as regards the consequences of size and age for growth; and our extension to a comprehensive model highlights the importance of location choice and customer orientation for the growth of Chinese private firms. In the latter model, growth is explained by variables like planning, R&D orientation, market competition, elasticity of demand etc. as well as by control variables. Our work on small firm growth achieves two things. First, it upholds the validity of ‘basic’ size-age-growth models, and successfully applies them to the Chinese economy. Second, it extends the compass of such models to a ‘comprehensive’ growth model incorporating firm-specific and environmental variables.
Resumo:
This paper reports on one of the first empirical attempts to investigate small firm growth and survival, and their determinants, in the Peoples’ Republic of China. The work is based on field work evidence gathered from a sample of 83 Chinese private firms (mainly SMEs) collected initially by face-to-face interviews, and subsequently by follow-up telephone interviews a year later. We extend the models of Gibrat (1931) and Jovanovic (1982), which traditionally focus on size and age alone (e.g. Brock and Evans, 1986), to a ‘comprehensive’ growth model with two types of additional explanatory variables: firm-specific (e.g. business planning); and environmental (e.g. choice of location). We estimate two econometric models: a ‘basic’ age-size-growth model; and a ‘comprehensive’ growth model, using Heckman’s two-step regression procedure. Estimation is by log-linear regression on cross-section data, with corrections for sample selection bias and heteroskedasticity. Our results refute a pure Gibrat model (but support a more general variant) and support the learning model, as regards the consequences of size and age for growth; and our extension to a comprehensive model highlights the importance of location choice and customer orientation for the growth of Chinese private firms. In the latter model, growth is explained by variables like planning, R&D orientation, market competition, elasticity of demand etc. as well as by control variables. Our work on small firm growth achieves two things. First, it upholds the validity of ‘basic’ size-age-growth models, and successfully applies them to the Chinese economy. Second, it extends the compass of such models to a ‘comprehensive’ growth model incorporating firm-specific and environmental variables.
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.
Resumo:
Expectations about the future are central for determination of current macroeconomic outcomes and the formulation of monetary policy. Recent literature has explored ways for supplementing the benchmark of rational expectations with explicit models of expectations formation that rely on econometric learning. Some apparently natural policy rules turn out to imply expectational instability of private agents’ learning. We use the standard New Keynesian model to illustrate this problem and survey the key results about interest-rate rules that deliver both uniqueness and stability of equilibrium under econometric learning. We then consider some practical concerns such as measurement errors in private expectations, observability of variables and learning of structural parameters required for policy. We also discuss some recent applications including policy design under perpetual learning, estimated models with learning, recurrent hyperinflations, and macroeconomic policy to combat liquidity traps and deflation.
Resumo:
This paper investigates the relationship between short term and long term in ation expectations in the US and the UK with a focus on iflation pass through (i.e. how changes in short term expectations affect long term expectations). An econometric methodology is used which allows us to uncover the relationship between in ation pass through and various explanatory variables. We relate our empirical results to theoretical models of anchored, contained and unmoored inflation expectations. For neither country do we find anchored or unmoored inflation expectations. For the US, contained inflation expectations are found. For the UK, our ndings are not consistent with the specifi =c model of contained inflation expectations presented here, but are consistent with a more broad view of expectations being constrained by the existence of an inflation target.
Resumo:
This paper does two things. First, it presents alternative approaches to the standard methods of estimating productive efficiency using a production function. It favours a parametric approach (viz. the stochastic production frontier approach) over a nonparametric approach (e.g. data envelopment analysis); and, further, one that provides a statistical explanation of efficiency, as well as an estimate of its magnitude. Second, it illustrates the favoured approach (i.e. the ‘single stage procedure’) with estimates of two models of explained inefficiency, using data from the Thai manufacturing sector, after the crisis of 1997. Technical efficiency is modelled as being dependent on capital investment in three major areas (viz. land, machinery and office appliances) where land is intended to proxy the effects of unproductive, speculative capital investment; and both machinery and office appliances are intended to proxy the effects of productive, non-speculative capital investment. The estimates from these models cast new light on the five-year long, post-1997 crisis period in Thailand, suggesting a structural shift from relatively labour intensive to relatively capital intensive production in manufactures from 1998 to 2002.
Resumo:
This paper has three contributions. First, it shows how field work within small firms in PR Chinese has provided new evidence which enables us to measure and calibrate Entrepreneurial Orientation (EO), as ‘spirit’, and Intangible Assets (IA), as ‘material’, for use in models of small firm growth. Second, it uses inter-item correlation analysis and both exploratory and confirmatory factor analysis to provide new measures of EO and IA, in index and in vector form, for use in econometric models of firm growth. Third, it estimates two new econometric models of small firm employment growth in PR China, under the null hypothesis of Gibrat’s Law, using our two new index-based and vector-based measures of EO and IA. Estimation is by OLS with adjustment for heteroscedasticity, and for sample selectivity. Broadly, it finds that EO attributes have had little significant impact on small firm growth, and indeed innovativeness and pro-activity paradoxically may even dampen growth. However, IA attributes have had a positive and significant impact on growth, with networking, and technological knowledge being of prime importance, and intellectual property and human capital being of lesser but still significant importance. In the light of these results, Gibrat’s Law is generalized, and Jovanovic’s learning theory is extended, to emphasise the importance of IA to growth. These findings cast new empirical light on the oft-quoted national slogan in PR China of “spirit and material”. So far as small firms are concerned, this paper suggests that their contribution to PR China’s remarkable economic growth is not so much attributable to the ‘spirit’ of enterprise (as suggested by propaganda) as, more prosaically, to the pursuit of the ‘material’.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
This paper develops stochastic search variable selection (SSVS) for zero-inflated count models which are commonly used in health economics. This allows for either model averaging or model selection in situations with many potential regressors. The proposed techniques are applied to a data set from Germany considering the demand for health care. A package for the free statistical software environment R is provided.
Resumo:
We propose an alternative approach to obtaining a permanent equilibrium exchange rate (PEER), based on an unobserved components (UC) model. This approach offers a number of advantages over the conventional cointegration-based PEER. Firstly, we do not rely on the prerequisite that cointegration has to be found between the real exchange rate and macroeconomic fundamentals to obtain non-spurious long-run relationships and the PEER. Secondly, the impact that the permanent and transitory components of the macroeconomic fundamentals have on the real exchange rate can be modelled separately in the UC model. This is important for variables where the long and short-run effects may drive the real exchange rate in opposite directions, such as the relative government expenditure ratio. We also demonstrate that our proposed exchange rate models have good out-of sample forecasting properties. Our approach would be a useful technique for central banks to estimate the equilibrium exchange rate and to forecast the long-run movements of the exchange rate.
Resumo:
This paper investigates the role of institutions in determining per capita income levels and growth. It contributes to the empirical literature by using different variables as proxies for institutions and by developing a deeper analysis of the issues arising from the use of weak and too many instruments in per capita income and growth regressions. The cross-section estimation suggests that institutions seem to matter, regardless if they are the only explanatory variable or are combined with geographical and integration variables, although most models suffer from the issue of weak instruments. The results from the growth models provides some interesting results: there is mixed evidence on the role of institutions and such evidence is more likely to be associated with law and order and investment profile; government spending is an important policy variable; collapsing the number of instruments results in fewer significant coefficients for institutions.
Resumo:
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.
Resumo:
In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can even be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are pT-consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.