21 resultados para Markov chain modelling
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).
Resumo:
In an input-output context the impact of any particular industrial sector is commonly measured in terms of the output multiplier for that industry. Although such measures are routinely calculated and often used to guide regional industrial policy the behaviour of such measures over time is an area that has attracted little academic study. The output multipliers derived from any one table will have a distribution; for some industries the multiplier will be relatively high, for some it will be relatively low. The recentpublication of consistent input-output tables for the Scottish economy makes it possible to examine trends in this mdistribution over the ten year period 1998-2007. This is done by comparing the means and other summary measures of the distributions, the histograms and the cumulative densities. The results indicate a tendency for the multipliers to increase over the period. A Markov chain modelling approach suggests that this drift is a slow but long term phenomenon which appears not to tend to an equilibrium state. The prime reason for the increase in the output multipliers is traced to a decline in the relative importance of imported (both from the rest of the UK and the rest of the world) intermediate inputs used by Scottish industries. This suggests that models calibrated on the set of tables might have to be interpreted with caution.
Resumo:
There are both theoretical and empirical reasons for believing that the parameters of macroeconomic models may vary over time. However, work with time-varying parameter models has largely involved Vector autoregressions (VARs), ignoring cointegration. This is despite the fact that cointegration plays an important role in informing macroeconomists on a range of issues. In this paper we develop time varying parameter models which permit cointegration. Time-varying parameter VARs (TVP-VARs) typically use state space representations to model the evolution of parameters. In this paper, we show that it is not sensible to use straightforward extensions of TVP-VARs when allowing for cointegration. Instead we develop a specification which allows for the cointegrating space to evolve over time in a manner comparable to the random walk variation used with TVP-VARs. The properties of our approach are investigated before developing a method of posterior simulation. We use our methods in an empirical investigation involving a permanent/transitory variance decomposition for inflation.
Resumo:
This paper contributes to the on-going empirical debate regarding the role of the RBC model and in particular of technology shocks in explaining aggregate fluctuations. To this end we estimate the model’s posterior density using Markov-Chain Monte-Carlo (MCMC) methods. Within this framework we extend Ireland’s (2001, 2004) hybrid estimation approach to allow for a vector autoregressive moving average (VARMA) process to describe the movements and co-movements of the model’s errors not explained by the basic RBC model. The results of marginal likelihood ratio tests reveal that the more general model of the errors significantly improves the model’s fit relative to the VAR and AR alternatives. Moreover, despite setting the RBC model a more difficult task under the VARMA specification, our analysis, based on forecast error and spectral decompositions, suggests that the RBC model is still capable of explaining a significant fraction of the observed variation in macroeconomic aggregates in the post-war U.S. economy.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
This paper considers the instrumental variable regression model when there is uncertainty about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very exible and can be easily adapted to analyze any of the di¤erent priors that have been proposed in the Bayesian instrumental variables literature. We show how to calculate the probability of any relevant restriction (e.g. the posterior probability that over-identifying restrictions hold) and discuss diagnostic checking using the posterior distribution of discrepancy vectors. We illustrate our methods in a returns-to-schooling application.
Resumo:
Vector Autoregressive Moving Average (VARMA) models have many theoretical properties which should make them popular among empirical macroeconomists. However, they are rarely used in practice due to over-parameterization concerns, difficulties in ensuring identification and computational challenges. With the growing interest in multivariate time series models of high dimension, these problems with VARMAs become even more acute, accounting for the dominance of VARs in this field. In this paper, we develop a Bayesian approach for inference in VARMAs which surmounts these problems. It jointly ensures identification and parsimony in the context of an efficient Markov chain Monte Carlo (MCMC) algorithm. We use this approach in a macroeconomic application involving up to twelve dependent variables. We find our algorithm to work successfully and provide insights beyond those provided by VARs.
Resumo:
In multilevel modelling, interest in modeling the nested structure of hierarchical data has been accompanied by increasing attention to different forms of spatial interactions across different levels of the hierarchy. Neglecting such interactions is likely to create problems of inference, which typically assumes independence. In this paper we review approaches to multilevel modelling with spatial effects, and attempt to connect the two literatures, discussing the advantages and limitations of various approaches.
Resumo:
This paper investigates underlying changes in the UK economy over the past thirtyfive years using a small open economy DSGE model. Using Bayesian analysis, we find UK monetary policy, nominal price rigidity and exogenous shocks, are all subject to regime shifting. A model incorporating these changes is used to estimate the realised monetary policy and derive the optimal monetary policy for the UK. This allows us to assess the effectiveness of the realised policy in terms of stabilising economic fluctuations, and, in turn, provide an indication of whether there is room for monetary authorities to further improve their policies.
Resumo:
Macroeconomists working with multivariate models typically face uncertainty over which (if any) of their variables have long run steady states which are subject to breaks. Furthermore, the nature of the break process is often unknown. In this paper, we draw on methods from the Bayesian clustering literature to develop an econometric methodology which: i) finds groups of variables which have the same number of breaks; and ii) determines the nature of the break process within each group. We present an application involving a five-variate steady-state VAR.
Resumo:
This paper presents a theoretical framework analysing the signalling channel of exchange rate interventions as an informational trigger. We develop an implicit target zone framework with learning in order to model the signalling channel. The theoretical premise of the model is that interventions convey signals that communicate information about the exchange rate objectives of central bank. The model is used to analyse the impact of Japanese FX interventions during the period 1999 -2011 on the yen/US dollar dynamics.
Resumo:
One aspect of the case for policy support for renewable energy developments is the wider economic benefits that are expected to be generated. Within Scotland, as with other regions of the UK, there is a focus on encouraging domestically‐based renewable technologies. In this paper, we use a regional computable general equilibrium framework to model the impact on the Scottish economy of expenditures relating to marine energy installations. The results illustrate the potential for (considerable) ‘legacy’ effects after expenditures cease. In identifying the specific sectoral expenditures with the largest impact on (lifetime) regional employment, this approach offers important policy guidance.
Resumo:
One aspect of the case for policy support for renewable energy developments is the wider economic benefits that are expected to be generated. Within Scotland, as with other regions of the UK, there is a focus on encouraging domestically‐based renewable technologies. In this paper, we use a regional computable general equilibrium framework to model the impact on the Scottish economy of expenditures relating to marine energy installations. The results illustrate the potential for (considerable) ‘legacy’ effects after expenditures cease. In identifying the specific sectoral expenditures with the largest impact on (lifetime) regional employment, this approach offers important policy guidance.
Resumo:
The regional economic impact of biofuel production depends upon a number of interrelated factors: the specific biofuels feedstock and production technology employed; the sector’s embeddedness to the rest of the economy, through its demand for local resources; the extent to which new activity is created. These issues can be analysed using multisectoral economic models. Some studies have used (fixed price) Input-Output (IO) and Social Accounting Matrix (SAM) modelling frameworks, whilst a nascent Computable General Equilibrium (CGE) literature has also begun to examine the regional (and national) impact of biofuel development. This paper reviews, compares and evaluates these approaches for modelling the regional economic impacts of biofuels.
Resumo:
This paper presents a theoretical framework analysing the signalling channel of exchange rate interventions as an informational trigger. We develop an implicit target zone framework with learning in order to model the signalling channel. The theoretical premise of the model is that interventions convey signals that communicate information about the exchange rate objectives of central bank. The model is used to analyse the impact of Japanese FX interventions during the period 1999 -2011 on the yen/US dollar dynamics.