27 resultados para Gibbs excess models
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
One of the cornerstone of financial anomalies is that there exists money making opportunities. Shiller’s excess volatility theory is re-investigated from the perspective of a trading strategy where the present value is computed using a series of simple econometric models to forecast the present value. The results show that the excess volatility may not be exploited given the data available until time t. However, when learning is introduced empirically, the simple trading strategy may offer profits, but which are likely to disappear once transaction costs are considered.
Resumo:
This paper investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in bond yields of seven advanced economies is due to global co-movement, which is mainly attributed to shocks to non-fundamentals. Global fundamentals, especially global inflation, affect yields through a ‘policy channel’ and a ‘risk compensation channel’, but the effects through two channels are offset. This evidence explains the unsatisfactory performance of fundamentals-driven term structure models. Our approach delineates asymmetric spillovers in global bond markets connected to diverging monetary policies. The proposed model is robust as identified factors has significant explanatory power of excess returns. The finding that global inflation uncertainty is useful in explaining realized excess returns does not rule out regime changing as a source of non-fundamental fluctuations.
Resumo:
One of the cornerstone of financial anomalies is that there exists money making opportunities. Shiller’s excess volatility theory is re-investigated from the perspective of a trading strategy where the present value is computed using a series of simple econometric models to forecast the present value. The results show that the excess volatility may not be exploited given the data available until time t. However, when learning is introduced empirically, the simple trading strategy may offer profits, but which are likely to disappear once transaction costs are considered.
Resumo:
This paper does two things. First, it presents alternative approaches to the standard methods of estimating productive efficiency using a production function. It favours a parametric approach (viz. the stochastic production frontier approach) over a nonparametric approach (e.g. data envelopment analysis); and, further, one that provides a statistical explanation of efficiency, as well as an estimate of its magnitude. Second, it illustrates the favoured approach (i.e. the ‘single stage procedure’) with estimates of two models of explained inefficiency, using data from the Thai manufacturing sector, after the crisis of 1997. Technical efficiency is modelled as being dependent on capital investment in three major areas (viz. land, machinery and office appliances) where land is intended to proxy the effects of unproductive, speculative capital investment; and both machinery and office appliances are intended to proxy the effects of productive, non-speculative capital investment. The estimates from these models cast new light on the five-year long, post-1997 crisis period in Thailand, suggesting a structural shift from relatively labour intensive to relatively capital intensive production in manufactures from 1998 to 2002.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
This paper develops stochastic search variable selection (SSVS) for zero-inflated count models which are commonly used in health economics. This allows for either model averaging or model selection in situations with many potential regressors. The proposed techniques are applied to a data set from Germany considering the demand for health care. A package for the free statistical software environment R is provided.
Resumo:
We propose an alternative approach to obtaining a permanent equilibrium exchange rate (PEER), based on an unobserved components (UC) model. This approach offers a number of advantages over the conventional cointegration-based PEER. Firstly, we do not rely on the prerequisite that cointegration has to be found between the real exchange rate and macroeconomic fundamentals to obtain non-spurious long-run relationships and the PEER. Secondly, the impact that the permanent and transitory components of the macroeconomic fundamentals have on the real exchange rate can be modelled separately in the UC model. This is important for variables where the long and short-run effects may drive the real exchange rate in opposite directions, such as the relative government expenditure ratio. We also demonstrate that our proposed exchange rate models have good out-of sample forecasting properties. Our approach would be a useful technique for central banks to estimate the equilibrium exchange rate and to forecast the long-run movements of the exchange rate.
Resumo:
This paper investigates the role of institutions in determining per capita income levels and growth. It contributes to the empirical literature by using different variables as proxies for institutions and by developing a deeper analysis of the issues arising from the use of weak and too many instruments in per capita income and growth regressions. The cross-section estimation suggests that institutions seem to matter, regardless if they are the only explanatory variable or are combined with geographical and integration variables, although most models suffer from the issue of weak instruments. The results from the growth models provides some interesting results: there is mixed evidence on the role of institutions and such evidence is more likely to be associated with law and order and investment profile; government spending is an important policy variable; collapsing the number of instruments results in fewer significant coefficients for institutions.
Resumo:
In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can even be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are pT-consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.
Resumo:
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.
Resumo:
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.