3 resultados para Flynn and Wall kinetic model

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper incorporates house prices within an NEG framework leading to the spatial distributions of wages, prices and income. The model assumes that all expenditure goes to firms under a monopolistic competition market structure, that labour efficiency units are appropriate, and that spatial equilibrium exists. The house price model coefficients are estimated outside the NEG model, allowing an econometric analysis of the significance of relevant covariates. The paper illustrates the methodology by estimating wages, income and prices for small administrative areas in Great Britain, and uses the model to simulate the effects of an exogenous employment shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develop and estimates a model of demand estimation for environmental public goods which allows for consumers to learn about their preferences through consumption experiences. We develop a theoretical model of Bayesian updating, perform comparative statics over the model, and show how the theoretical model can be consistently incorporated into a reduced form econometric model. We then estimate the model using data collected for two environmental goods. We find that the predictions of the theoretical exercise that additional experience makes consumers more certain over their preferences in both mean and variance are supported in each case.