16 resultados para Deguelia rufescens var. urucu
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
This paper contributes to the on-going empirical debate regarding the role of the RBC model and in particular of technology shocks in explaining aggregate fluctuations. To this end we estimate the model’s posterior density using Markov-Chain Monte-Carlo (MCMC) methods. Within this framework we extend Ireland’s (2001, 2004) hybrid estimation approach to allow for a vector autoregressive moving average (VARMA) process to describe the movements and co-movements of the model’s errors not explained by the basic RBC model. The results of marginal likelihood ratio tests reveal that the more general model of the errors significantly improves the model’s fit relative to the VAR and AR alternatives. Moreover, despite setting the RBC model a more difficult task under the VARMA specification, our analysis, based on forecast error and spectral decompositions, suggests that the RBC model is still capable of explaining a significant fraction of the observed variation in macroeconomic aggregates in the post-war U.S. economy.
Resumo:
The so-called German Dominance Hypothesis (GDH) claimed that Bundesbank policies were transmitted into other European Monetary System (EMS) interest rates during the pre-euro era. We reformulate this hypothesis for the Central and Eastern European (CEE) countries that are on the verge of accessing the eurozone. We test this \Euro Dominance Hypothesis (EDH)" in a novel way using a global vector autoregressive (GVAR) approach that combines country-speci c error correction models in a global system. We nd that euro area monetary policies are transmitted into CEE interest rates which provides evidence for monetary integration between the eurozone and CEE countries. Our framework also allows for introducing global monetary shocks to provide empirical evidence regarding the e ects of the recent nancial crisis on monetary integration in Europe.
Resumo:
While flexible exchange rates facilitate stabilisation, exchange rate fluctuations can cause real volatility. This gives policy importance to the causal relationship between exchange rate depreciation and its volatility. An exchange rate may be expected to become more volatile when the underlying currency loses value. We conjecture that a reverse causation, which further weakens the currency, may be mitigated by price stability. Data from Ghana, Mozambique and Tanzania support this: depreciation makes exchange rate more volatile for all but volatility does not causes depreciation in Tanzania which has enjoyed a more stable inflation despite all countries adopting similar macro-policies since early 1990s.
Resumo:
This study utilizes a macro-based VAR framework to investigate whether stock portfolios formedon the basis of their value, size and past performance characteristics are affected in a differentialmanner by unexpected US monetary policy actions during the period 1967-2007. Full sample results show that value, small capitalization and past loser stocks are more exposed to monetary policy shocks in comparison to growth, big capitalization and past winner stocks. Subsample analysis, motivated by variation in the realized premia and parameter instability, reveals that monetary policy shocks’ impact on these portfolios is significant and pronounced only during the pre-1983 period.
Resumo:
This paper uses forecasts from the European Central Bank's Survey of Professional Forecasters to investigate the relationship between inflation and inflation expectations in the euro area. We use theoretical structures based on the New Keynesian and Neoclassical Phillips curves to inform our empirical work. Given the relatively short data span of the Survey of Professional Forecasters and the need to control for many explanatory variables, we use dynamic model averaging in order to ensure a parsimonious econometric speci cation. We use both regression-based and VAR-based methods. We find no support for the backward looking behavior embedded in the Neo-classical Phillips curve. Much more support is found for the forward looking behavior of the New Keynesian Phillips curve, but most of this support is found after the beginning of the financial crisis.
Resumo:
Macroeconomists working with multivariate models typically face uncertainty over which (if any) of their variables have long run steady states which are subject to breaks. Furthermore, the nature of the break process is often unknown. In this paper, we draw on methods from the Bayesian clustering literature to develop an econometric methodology which: i) finds groups of variables which have the same number of breaks; and ii) determines the nature of the break process within each group. We present an application involving a five-variate steady-state VAR.
Resumo:
This paper is motivated by the recent interest in the use of Bayesian VARs for forecasting, even in cases where the number of dependent variables is large. In such cases, factor methods have been traditionally used but recent work using a particular prior suggests that Bayesian VAR methods can forecast better. In this paper, we consider a range of alternative priors which have been used with small VARs, discuss the issues which arise when they are used with medium and large VARs and examine their forecast performance using a US macroeconomic data set containing 168 variables. We nd that Bayesian VARs do tend to forecast better than factor methods and provide an extensive comparison of the strengths and weaknesses of various approaches. Our empirical results show the importance of using forecast metrics which use the entire predictive density, instead of using only point forecasts.
Resumo:
In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.
Resumo:
VAR methods have been used to model the inter-relationships between inflows and outfl ows into unemployment and vacancies using tools such as impulse response analysis. In order to investigate whether such impulse responses change over the course of the business cycle or or over time, this paper uses TVP-VARs for US and Canadian data. For the US, we find interesting differences between the most recent recession and earlier recessions and expansions. In particular, we find the immediate effect of a negative shock on both in ow and out flow hazards to be larger in 2008 than in earlier times. Furthermore, the effect of this shock takes longer to decay. For Canada, we fi nd less evidence of time-variation in impulse responses.
Resumo:
This paper discusses the challenges faced by the empirical macroeconomist and methods for surmounting them. These challenges arise due to the fact that macroeconometric models potentially include a large number of variables and allow for time variation in parameters. These considerations lead to models which have a large number of parameters to estimate relative to the number of observations. A wide range of approaches are surveyed which aim to overcome the resulting problems. We stress the related themes of prior shrinkage, model averaging and model selection. Subsequently, we consider a particular modelling approach in detail. This involves the use of dynamic model selection methods with large TVP-VARs. A forecasting exercise involving a large US macroeconomic data set illustrates the practicality and empirical success of our approach.
Resumo:
An important disconnect in the news driven view of the business cycle formalized by Beaudry and Portier (2004), is the lack of agreement between different—VAR and DSGE—methodologies over the empirical plausibility of this view. We argue that this disconnect can be largely resolved once we augment a standard DSGE model with a financial channel that provides amplification to news shocks. Both methodologies suggest news shocks to the future growth prospects of the economy to be significant drivers of U.S. business cycles in the post-Greenspan era (1990-2011), explaining as much as 50% of the forecast error variance in hours worked in cyclical frequencies
Resumo:
This paper proposes full-Bayes priors for time-varying parameter vector autoregressions (TVP-VARs) which are more robust and objective than existing choices proposed in the literature. We formulate the priors in a way that they allow for straightforward posterior computation, they require minimal input by the user, and they result in shrinkage posterior representations, thus, making them appropriate for models of large dimensions. A comprehensive forecasting exercise involving TVP-VARs of different dimensions establishes the usefulness of the proposed approach.
Resumo:
We study the asymmetric and dynamic dependence between financial assets and demonstrate, from the perspective of risk management, the economic significance of dynamic copula models. First, we construct stock and currency portfolios sorted on different characteristics (ex ante beta, coskewness, cokurtosis and order flows), and find substantial evidence of dynamic evolution between the high beta (respectively, coskewness, cokurtosis and order flow) portfolios and the low beta (coskewness, cokurtosis and order flow) portfolios. Second, using three different dependence measures, we show the presence of asymmetric dependence between these characteristic-sorted portfolios. Third, we use a dynamic copula framework based on Creal et al. (2013) and Patton (2012) to forecast the portfolio Value-at-Risk of long-short (high minus low) equity and FX portfolios. We use several widely used univariate and multivariate VaR models for the purpose of comparison. Backtesting our methodology, we find that the asymmetric dynamic copula models provide more accurate forecasts, in general, and, in particular, perform much better during the recent financial crises, indicating the economic significance of incorporating dynamic and asymmetric dependence in risk management.
Resumo:
The behavior of commodities is critical for developing and developed countries alike. This paper contributes to the empirical evidence on the co-movement and determinants of commodity prices. Using nonstationary panel methods, we document a statistically significant degree of co-movement due to a common factor. Within a Factor Augmented VAR approach, real interest rate and uncertainty, as postulated by a simple asset pricing model, are both found to be negatively related to this common factor. This evidence is robust to the inclusion of demand and supply shocks, which both positively impact on the co-movement of commodity prices.
Resumo:
There is a vast literature that specifies Bayesian shrinkage priors for vector autoregressions (VARs) of possibly large dimensions. In this paper I argue that many of these priors are not appropriate for multi-country settings, which motivates me to develop priors for panel VARs (PVARs). The parametric and semi-parametric priors I suggest not only perform valuable shrinkage in large dimensions, but also allow for soft clustering of variables or countries which are homogeneous. I discuss the implications of these new priors for modelling interdependencies and heterogeneities among different countries in a panel VAR setting. Monte Carlo evidence and an empirical forecasting exercise show clear and important gains of the new priors compared to existing popular priors for VARs and PVARs.