8 resultados para Autoregressive-Moving Average model
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
This paper contributes to the on-going empirical debate regarding the role of the RBC model and in particular of technology shocks in explaining aggregate fluctuations. To this end we estimate the model’s posterior density using Markov-Chain Monte-Carlo (MCMC) methods. Within this framework we extend Ireland’s (2001, 2004) hybrid estimation approach to allow for a vector autoregressive moving average (VARMA) process to describe the movements and co-movements of the model’s errors not explained by the basic RBC model. The results of marginal likelihood ratio tests reveal that the more general model of the errors significantly improves the model’s fit relative to the VAR and AR alternatives. Moreover, despite setting the RBC model a more difficult task under the VARMA specification, our analysis, based on forecast error and spectral decompositions, suggests that the RBC model is still capable of explaining a significant fraction of the observed variation in macroeconomic aggregates in the post-war U.S. economy.
Resumo:
Vector Autoregressive Moving Average (VARMA) models have many theoretical properties which should make them popular among empirical macroeconomists. However, they are rarely used in practice due to over-parameterization concerns, difficulties in ensuring identification and computational challenges. With the growing interest in multivariate time series models of high dimension, these problems with VARMAs become even more acute, accounting for the dominance of VARs in this field. In this paper, we develop a Bayesian approach for inference in VARMAs which surmounts these problems. It jointly ensures identification and parsimony in the context of an efficient Markov chain Monte Carlo (MCMC) algorithm. We use this approach in a macroeconomic application involving up to twelve dependent variables. We find our algorithm to work successfully and provide insights beyond those provided by VARs.
Resumo:
We investigate the dynamic and asymmetric dependence structure between equity portfolios from the US and UK. We demonstrate the statistical significance of dynamic asymmetric copula models in modelling and forecasting market risk. First, we construct “high-minus-low" equity portfolios sorted on beta, coskewness, and cokurtosis. We find substantial evidence of dynamic and asymmetric dependence between characteristic-sorted portfolios. Second, we consider a dynamic asymmetric copula model by combining the generalized hyperbolic skewed t copula with the generalized autoregressive score (GAS) model to capture both the multivariate non-normality and the dynamic and asymmetric dependence between equity portfolios. We demonstrate its usefulness by evaluating the forecasting performance of Value-at-Risk and Expected Shortfall for the high-minus-low portfolios. From back-testing, e find consistent and robust evidence that our dynamic asymmetric copula model provides the most accurate forecasts, indicating the importance of incorporating the dynamic and asymmetric dependence structure in risk management.
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
This paper undertakes a normative investigation of the quantitative properties of optimal tax smoothing in a business cycle model with state contingent debt, capital-skill complementarity, endogenous skill formation and stochastic shocks to public consumption as well as total factor and capital equipment productivity. Our main finding is that an empirically relevant restriction which does not allow the relative supply of skilled labour to adjust in response to aggregate shocks, signi cantly changes the cyclical properties of optimal labour taxes. Under a restricted relative skill supply, the government fi nds it optimal to adjust labour income tax rates so that the average net returns to skilled and unskilled labour hours exhibit the same dynamic behaviour as under fl exible skill supply.
Resumo:
This paper introduces a State Space approach to explain the dynamics of rent growth, expected returns and Price-Rent ratio in housing markets. According to the present value model, movements in price to rent ratio should be matched by movements in expected returns and expected rent growth. The state space framework assume that both variables follow an autoregressive process of order one. The model is applied to the US and UK housing market, which yields series of the latent variables given the behaviour of the Price-Rent ratio. Resampling techniques and bootstrapped likelihood ratios show that expected returns tend to be highly persistent compared to rent growth. The Öltered expected returns is considered in a simple predictability of excess returns model with high statistical predictability evidenced for the UK. Overall, it is found that the present value model tends to have strong statistical predictability in the UK housing markets.