147 resultados para BACTERIAL INFECTIONS

em Universit


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflammatory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysaccharide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel target for therapeutic intervention in patients with septic shock.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Superantigens (SAgs) are microbial proteins which have potent effects on the immune system. They are presented by major histocompatibility complex (MHC) class II molecules and interact with a large number of T cells expressing specific T cell receptor V beta domains. Encounter of a SAg leads initially to the stimulation and subsequently to the clonal deletion of reactive T cells. SAgs are expressed by a wide variety of microorganisms which use them to exploit the immune system to their own advantage. Bacterial SAgs are exotoxins which are linked to several diseases in humans and animals. A classical example is the toxic shock syndrome in which the massive release of cytokines by SAg-reactive cells is thought to play a major pathogenic role. The best characterized viral SAg is encoded by mouse mammary tumour virus (MMTV) and has proved to have a major influence on the viral life cycle by dramatically increasing the efficiency of viral infection. In this paper, we review the general properties of SAgs and discuss the different types of microorganisms which produce these molecules, with a particular emphasis on the role played by the SAg-induced immune response in the course of microbial infections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increased incidence over the past decade of bloodstream infections (BSIs) caused by gram-positive bacteria, particularly methicillin-resistant Staphylococcus aureus, highlights the critical need for a consistent approach to therapy. However, there is currently no international consensus on the diagnosis and management of gram-positive BSIs. The Clinical Consensus Conference on Gram-Positive Bloodstream Infections was convened as a session at the 9th International Symposium on Modern Concepts in Endocarditis and Cardiovascular Infections held in 2007. Participants discussed various aspects of the practical treatment of patients who present with gram-positive BSI, including therapeutic options for patients with BSIs of undefined origin, the selection of appropriate empirical therapy, and treatment of complicated and uncomplicated BSIs. The opinions of participants about these key issues are reflected in this article.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several evidences in humans underscored the contribution of CD4 and CD8 T-cell responses in controlling viral and bacterial infections. However, CD4 and CD8 Τ cells have distinct and specific effector functions leading to a hierarchical importance in responding to different types of pathogens. In this context, the present work aimed to investigate distinct CD8 T-cell features potentially influencing T-cell efficacy against viral infection. To achieve this-objective, CD8 Τ cells derived from HIV-infected patients and healthy donors harbouring virus-specific immune responses or immunized with an HTV vaccine candidate were studied. In particular, we performed a comprehensive cross-sectional and longitudinal analysis to characterize the function, the phenotype and the functional avidity of HIV-specific CD8 Τ cells during acute (PHI) and chronic infection and, in particular, we investigated immunological parameters potentially associated with the functional avidity of HIV-specific CD8 Τ cells. In addition, we studied the expression pattern of co-inhibitory molecules and the influence of CD 160 on the functions of CD8 Τ cells in absence of chronic infections. From these analyses we observed that the functional avidity of HIV-specific CD8 T- cell responses was significantly lower in acute than in chronic infection, but was not different between chronic progressive and non-progressive patients. Functional avidity remained low after several years of antiretroviral therapy in PHI patients, but increased in patients experiencing a virus rebound following treatment interruption in association with a massive renewal of the global CD8 complementarity-determining region 3 of the TCR. The functional avidity was also directly associated to T-cell exhaustion. In individuals with no sign of HIV or Hepatitis A, Β or C virus infection, CD8 Τ cells expressed higher levels of co-inhibitory molecules than CD4 Τ cells and this was dependent on the stage of T-cell differentiation and activation. The expression of CD 160 impaired the proliferation capacity and IL-2 production of CD8 Τ cells and was reduced upon CD8 T-cell activation, entitling CD 160 as unique marker of CD8 T-cell exhaustion. The CD 160 blockade restored the proliferation capacity of virus-specific CD8 Τ cells providing a potential new target for immunotherapy. All together, these results expand our knowledge regarding the interplay between the immune system and the viruses. - De nombreuses études chez l'Homme ont mis en évidence la contribution des réponses cellulaires Τ CD4 et CD8 dans le contrôle des infections virales et bactériennes. En particulier, les lymphocytes Τ ont différentes fonctions effectrices spécifiques qui leur confèrent un rôle clé lors d'infections par différents pathogènes. Ce travail vise à étudier différentes caractéristiques des cellules Τ CD8 affectant l'efficacité des réponses cellulaires contre les virus. Pour atteindre cet objectif nous avons étudié les cellules Τ CD8 provenant de patients infectés par le VIH et de donneurs sains avec des réponses immunitaires naturelles ou vaccinales contre des virus. Nous avons effectué plusieurs analyses transversales et longitudinales des fonctions, du phénotype et de l'avidité fonctionnelle des lymphocytes Τ CD8 spécifiques au VIH au cours d'infections aiguës et chroniques; en particulier, nous avons étudié les paramètres immunologiques qui pourraient être associés à l'avidité fonctionnelle. De plus, nous avons investigué le profil d'expression des principales molécules co-inhibitrices et en particulier le rôle du CD 160 dans les fonctions des lymphocytes Τ CD8. Sur la base de ces analyses, nous avons constaté que l'avidité fonctionnelle des cellules Τ CD8 spécifiques au VIH était significativement plus faible lors infections aiguës que lors d'infections chroniques, mais n'était, par contre, pas différente entre les patients avec des infections chroniques progressives et non progressives. L'avidité fonctionnelle reste faible après plusieurs années de traitement antirétroviral, mais augmente chez les patients subissant un rebond viral, et donc exposés à des hautes virémies, suite à l'interruption du traitement. Cette augmentation d'avidité des lymphocytes Τ CD8, liée à un épuisement fonctionnel accru, était quantitativement directement associée à un renouvellement massif du TCR. Indépendamment de l'infection par le VIH, les cellules Τ CD8 expriment des niveaux plus élevés de molécules co-inhibitrices (PD-1, 2B4 et CD 160) par rapport aux cellules Τ CD4 et ceci dépend de leur stade de différenciation et d'activation. En particulier, CD 160 semble être un marqueur clé d'épuisement cellulaire des cellules Τ CD8, et donc une nouvelle cible potentielle pour l'immunothérapie, car a) son expression réduit la capacité proliférative et la production d'IL-2 b) CD 160 diminue suite à 1'activation et c) le blocage de CD 160 redonne la capacité proliférative aux cellules Τ CD8 spécifiques aux virus. - Le système immunitaire est un ensemble de cellules, tissus et organes indispensables pour limiter l'entrée des pathogènes à travers la peau et les muqueuses. Parmi les différentes cellules composant le système immunitaire, les cellules Τ CD4 et CD8 sont fondamentales pour le contrôle des infections virales et bactériennes. Les moyens pour combattre les différents pathogènes peuvent être cependant très variables. Les cellules Τ CD8, qui sont indispensables pour la lutte contre les virus, peuvent avoir différents niveaux de sensibilité; les cellules qui répondent à de faibles quantités d'antigène ont une forte sensibilité. Suite à une première infection virale, les cellules Τ CD8 ont une sensibilité plus faible que lors d'expositions répétées au même virus. En effet, la réexposition au pathogène induit une augmentation de sensibilité, grâce au recrutement et/ou à l'expansion de cellules Τ dotées d'une sensibilité plus élevée. Les cellules Τ CD8 avec une plus haute sensibilité semblent être caractérisées par une perte de fonctionnalité (épuisement fonctionnel associé à une haute expression de molécules dites inhibitrices). En absence d'infection, la fonction des molécules inhibitrices n'est pas encore clairement définie. Les cellules Τ CD8 montrent un niveau d'expression plus élevé de ces molécules par rapport aux cellules Τ CD4. Ceci dépend de l'état des cellules. Parmi ces molécules, le CD160 est associé à l'incapacité des cellules à proliférer et à produire de l'IL-2, une protéine importante pour la prolifération et la survie cellulaire. L'incapacité des cellules exprimant le CD 160 à proliférer en réponse à des virus peut être restaurée par le blocage fonctionnel du récepteur CD 160. Cette étude étoffe notre connaissance du rôle des cellules Τ CD8 ainsi que des conséquences induites par leur épuisement fonctionnel. Ces informations sont fondamentales pour le développement de nouvelles stratégies thérapeutiques et vaccinales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although Drosophila systemic immunity is extensively studied, little is known about the fly's intestine-specific responses to bacterial infection. Global gene expression analysis of Drosophila intestinal tissue to oral infection with the Gram-negative bacterium Erwinia carotovora revealed that immune responses in the gut are regulated by the Imd and JAK-STAT pathways, but not the Toll pathway. Ingestion of bacteria had a dramatic impact on the physiology of the gut that included modulation of stress response and increased stem cell proliferation and epithelial renewal. Our data suggest that gut homeostasis is maintained through a balance between cell damage due to the collateral effects of bacteria killing and epithelial repair by stem cell division. The Drosophila gut provides a powerful model to study the integration of stress and immunity with pathways associated with stem cell control, and this study should prove to be a useful resource for such further studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: To study the correlation between the bacteriological and histopathological findings in placentas from women with suspected or proven chorioamnionitis (CA). METHODS: Over a 1-year period, 376 placentas were prospectively collected and processed for bacteriological and pathological studies in cases of confirmed or suspected maternal or neonatal infection. RESULTS: Histological CA was diagnosed in 26.9% of placentas (101/376), and 27.7% (28/101) of these placentas had positive bacteriological cultures. A monomicrobial culture, mainly represented by Gram-positive cocci and Gram-negative bacilli, was identified in 27% of the positive bacterial cultures. The proportion of positive cultures was higher (p=0.03) when CA was associated with funisitis, as compared with placental samples with early CA. In placentas without histological CA, bacteriological cultures were mostly negative (230/275), although pathogenic bacteria were identified in 16.3% of them (45/275). CONCLUSIONS: The histological and bacteriological results were concordant in about 70% of the examined placentas, with 61.1% negative cases (CA absent and negative bacterial cultures), and only 7.4% placentas with positive histological and bacteriological results. Discordant results (positive histology with negative bacteriology) were obtained in placentas with early CA documented by histology although possibly in relation with antibiotic prophylaxis and the presence of fastidious bacteria. Conversely, negative histology with positive bacteriology could be explained by the presence of an early-stage bacterial infection that has not yet led to detectable microscopic lesions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Superantigens have been defined in a variety of infectious particles such as bacteria and viruses. These superantigens have the capacity to stimulate a large percentage of the host T cells by interacting specifically with the T-cell receptor V beta chain which is shared by about 1-20% of mature T cells. The recent discovery that mammary tumour viruses express such superantigens enabled the analysis of the retroviral life cycle and led to questions about the role of superantigen in amplification of the infection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Abdominal infections are frequent causes of sepsis and septic shock in the intensive care unit (ICU) and are associated with adverse outcomes. We analyzed the characteristics, treatments and outcome of ICU patients with abdominal infections using data extracted from a one-day point prevalence study, the Extended Prevalence of Infection in the ICU (EPIC) II. METHODS: EPIC II included 13,796 adult patients from 1,265 ICUs in 75 countries. Infection was defined using the International Sepsis Forum criteria. Microbiological analyses were performed locally. Participating ICUs provided patient follow-up until hospital discharge or for 60 days. RESULTS: Of the 7,087 infected patients, 1,392 (19.6%) had an abdominal infection on the study day (60% male, mean age 62 ± 16 years, SAPS II score 39 ± 16, SOFA score 7.6 ± 4.6). Microbiological cultures were positive in 931 (67%) patients, most commonly Gram-negative bacteria (48.0%). Antibiotics were administered to 1366 (98.1%) patients. Patients who had been in the ICU for ≤ 2 days prior to the study day had more Escherichia coli, methicillin-sensitive Staphylococcus aureus and anaerobic isolates, and fewer enterococci than patients who had been in the ICU longer. ICU and hospital mortality rates were 29.4% and 36.3%, respectively. ICU mortality was higher in patients with abdominal infections than in those with other infections (29.4% vs. 24.4%, p < 0.001). In multivariable analysis, hematological malignancy, mechanical ventilation, cirrhosis, need for renal replacement therapy and SAPS II score were independently associated with increased mortality. CONCLUSIONS: The characteristics, microbiology and antibiotic treatment of abdominal infections in critically ill patients are diverse. Mortality in patients with isolated abdominal infections was higher than in those who had other infections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We described for the first time the amino acid substitutions conferring rifampicin resistance in eight Propionibacterium acnes strains isolated from patients with biofilm or device-related infections. We identified different mutations in cluster I and one mutation, never reported, in cluster II of the rpoB gene (I480V) associated with the most frequent one in cluster I (S442L). Half of the patients previously received treatment with rifampicin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pneumococcal diseases are the first cause of bacterial infections in adult and in the aged adult. While its considerable morbi-mortality is potentially preventable through vaccination, the interest of anti-pneumococcal vaccination in these populations is still debated. Effectiveness appraisal of current anti-pneumococcal vaccines and the perspectives in terms of preventive strategies against Streptococcus pneumoniae infections in the adult population are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since the 1950s, medical communities have been facing with emerging and reemerging infectious diseases, and emerging pathogens are now considered to be a major microbiologic public health threat. In this review, we focus on bacterial emerging diseases and explore factors involved in their emergence as well as future challenges. We identified 26 major emerging and reemerging infectious diseases of bacterial origin; most of them originated either from an animal and are considered to be zoonoses or from water sources. Major contributing factors in the emergence of these bacterial infections are: (1) development of new diagnostic tools, such as improvements in culture methods, development of molecular techniques and implementation of mass spectrometry in microbiology; (2) increase in human exposure to bacterial pathogens as a result of sociodemographic and environmental changes; and (3) emergence of more virulent bacterial strains and opportunistic infections, especially affecting immunocompromised populations. A precise definition of their implications in human disease is challenging and requires the comprehensive integration of microbiological, clinical and epidemiologic aspects as well as the use of experimental models. It is now urgent to allocate financial resources to gather international data to provide a better understanding of the clinical relevance of these waterborne and zoonotic emerging diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

50 years ago, the introduction of penicillin, followed by many other antibacterial agents, represented an often underestimated medical revolution. Indeed, until that time, bacterial infections were the prime cause of mortality, especially in children and elderly patients. The discovery of numerous new substances and their development on an industrial scale gave us the illusion that bacterial infections were all but vanquished. However, the widespread and sometimes uncontrolled use of these agents has led to the selection of bacteria resistant to practically all available antibiotics. Bacteria utilize three main resistance strategies: (1) modification of their permeability, (2) modification of target, and (3) modification of the antibiotic. Bacteria modify their permeability either by becoming impermeable to antibiotics, or by actively excreting the drug accumulated in the cell. As an alternative, they can modify the structure of the antibiotic's molecular target--usually an essential metabolic enzyme of the bacterium--and thus escape the drug's toxic effect. Lastly, they can produce enzymes capable of modifying and directly inactivating antibiotics. In addition, bacteria have evolved extremely efficient genetic transfer systems capable of exchanging and accumulating resistance genes. Some pathogens, such as methicillin-resistant Staphylococcus aureus and multiresistant Mycobacterium tuberculosis, have become resistant to almost all available antibiotics and there are only one or two substances still active against such organisms. Antibiotics are very precious drugs which must be administered to patients who need them. On the other hand, the development of resistance must be kept under control by a better comprehension of its mechanisms and modes of transmission and by abiding by the fundamental rules of anti-infectious chemotherapy, i.e.: (1) choose the most efficient antibiotic according to clinical and local epidemiological data, (2) target the bacteria according to the microbiological data at hand, and (3) administer the antibiotic in an adequate dose which will leave the pathogen no chance to develop resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytokines have a fundamental role in orchestrating innate immune responses to bacterial infections. Interleukin-33 (IL-33) is now shown to protect from sepsis by promoting neutrophil influx into the focus of infection