47 resultados para voltammetry of immobilized microparticles

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orosomucoid (ORM) phenotyping has been performed on 329 unrelated Swiss subjects, using immobilized pH gradients with 8 M urea and 2% v/v 2-mercaptoethanol followed by immunoblotting. After desialylation the band patterns of ORM confirmed that the polymorphism of the structural locus ORM1 is controlled by three codominant autosomal alleles (ORM1*F1, ORM1*S and ORM1*F2). One rare and one new allele were detected. The rare variant, tentatively assigned to the second structural locus ORM2, is observed in a cathodal position and named ORM2 B1. The new variant, tentatively assigned to the first structural locus ORM1, is observed in a region located between ORM1 S and ORM1 F2, and named ORM1 F3. Moreover, the pI values of the ORM variants have been measured accurately with Immobiline Dry Plates (LKB): they were found to be within the pH range 4.93-5.14.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The mechanisms involved in the formation of red blood cell (RBC) microparticles in vivo as well as during erythrocyte storage are reviewed, and the potential role of microparticles in transfusion medicine is described. RECENT FINDINGS: Microparticles release is an integral part of the erythrocyte ageing process, preventing early removal of RBCs. Proteomics analyses have outlined the key role of band 3-ankyrin anchoring complex and the occurrence of selective RBC membrane remodelling mechanisms in microparticles formation. The presence of several RBC antigens, expressed on microparticles, has been demonstrated. The potential deleterious effects of RBC microparticles in transfused recipients, including hypercoagulability, microcirculation impairment and immunosuppression, are discussed. SUMMARY: Formation and role of RBC microparticles are far from being completely understood. Combining various approaches to elucidate these mechanisms could improve blood product quality and transfusion safety. Implementation of RBC microparticles as biomarkers in the laboratory routine needs to overcome technical barriers involved in their analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 degrees C, as in vivo. Using two orthogonal methods, a common SLP (20 Wg(-1)) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and human MG63 osteoblast-like cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the use of in situ implant formation that incorporates superparamagnetic iron oxide nanoparticles (SPIONs) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. We developed injectable formulations that form gels entrapping magnetic particles into a tumor. We used SPIONs embedded in silica microparticles to favor syringeability and incorporated the highest proportion possible to allow large heating capacities. Hydrogel, single-solvent organogel and cosolvent (low-toxicity hydrophilic solvent) organogel formulations were injected into human cancer tumors xenografted in mice. The thermoreversible hydrogels (poloxamer, chitosan), which accommodated 20% w/v of the magnetic microparticles, proved to be inadequate. Alginate hydrogels, however, incorporated 10% w/v of the magnetic microparticles, and the external gelation led to strong implants localizing to the tumor periphery, whereas internal gelation failed in situ. The organogel formulations, which consisted of precipitating polymers dissolved in single organic solvents, displayed various microstructures. A 8% poly(ethylene-vinyl alcohol) in DMSO containing 40% w/v of magnetic microparticles formed the most suitable implants in terms of tumor casting and heat delivery. Importantly, it is of great clinical interest to develop cosolvent formulations with up to 20% w/v of magnetic microparticles that show reduced toxicity and centered tumor implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many currently used and candidate vaccine adjuvants are particulate in nature, but their mechanism of action is not well understood. Here, we show that particulate adjuvants, including biodegradable poly(lactide-co-glycolide) (PLG) and polystyrene microparticles, dramatically enhance secretion of interleukin-1beta (IL-1beta) by dendritic cells (DCs). The ability of particulates to promote IL-1beta secretion and caspase 1 activation required particle uptake by DCs and NALP3. Uptake of microparticles induced lysosomal damage, whereas particle-mediated enhancement of IL-1beta secretion required phagosomal acidification and the lysosomal cysteine protease cathepsin B, suggesting a role for lysosomal damage in inflammasome activation. Although the presence of a Toll-like receptor (TLR) agonist was required to induce IL-1beta production in vitro, injection of the adjuvants in the absence of TLR agonists induced IL-1beta production at the injection site, indicating that endogenous factors can synergize with particulates to promote inflammasome activation. The enhancement of antigen-specific antibody production by PLG microparticles was independent of NALP3. However, the ability of PLG microparticles to promote antigen-specific IL-6 production by T cells and the recruitment and activation of a population of CD11b(+)Gr1(-) cells required NALP3. Our data demonstrate that uptake of microparticulate adjuvants by DCs activates the NALP3 inflammasome, and this contributes to their enhancing effects on innate and antigen-specific cellular immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Microparticles are small phospholipid vesicles of <1 lm shed in blood flow by various cell types including red blood cells. Erythrocyte-derived microparticles (EMPs) accumulate in erythrocyte concentrates (ECs) during their storage time. EMPs are considered as part of storage lesion and as their exact role is not elucidated, they could be involved in these clinical outcomes. Aims: The aim of this study is to evaluate the impact and implication of EMPs isolate from ECs on coagulation. Methods: EMPs were first isolated from erythrocyte concentrates by centrifugation and counted by flow cytometry. Using a calibrated automated thrombogram, EMPs were then added to different type of plasmas in order to evaluate the potential of thrombin generation. Results: We demonstrate that EMPs isolated from ECs are capable to accelerate and amplify thrombin generation in presence of a low exogenous tissue factor concentration, thanks to their negatively charged membrane necessary for the assembly of coagulation complexes. Interestingly, in the absence of exogenous tissue factor, EMPs are also able to trigger thrombin generation. In addition, thrombin generation induced by EMPs is not affected by the presence of anti-TF antibodies. Finally, thrombin generation induced by EMPs is not affected by using plasma samples deficient in factor VII, XI or XII. However, thrombin generation is reduced in plasma deficient in factor VIII or IX and is completely abolished in plasma deficient in factor X, V or II. No thrombin generation was observed in plasma samples without EMPs. Summary/conclusion: Several studies have shown a link between storage time of blood products and post transfusion complications. We provide evidence that EMPs accumulated during storage of erythrocyte concentrates were not only able to accelerate and support thrombin generation in plasma in presence of a low exogenous tissue-factor concentration, but also to trigger thrombin generation in absence of exogenous TF. The impact of those transfused EMs is unknown on recipients, nevertheless it could be hypothesized that under certain circumstances, transfused EMPs could be involved in thrombin generation and could be linked to adverse clinical outcome. Further work is needed to determine whether procoagulant EMPs transfused with erythrocyte concentrate may account for some of the complications occurring after red blood cell transfusion, and more particularly after transfusion of ''older''stored blood, rich in EMPs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method allowing a clear separation of the different variants of desialylated alpha 1-acid glycoprotein (orosomucoid) has been developed using isoelectric focusing in immobilized pH gradients, supplemented with 8 M urea and 2% v/v 2-mercaptoethanol. Immunoblotting with two antibody-steps afforded high sensitivity and permitted the detection of about 700 pg of alpha 1-acid glycoprotein in a 20 microL plasma sample diluted 1:28 672. A one year old bloodstrain, kept at room temperature, could easily be phenotyped.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contamination with arsenic is a recurring problem in both industrialized and developing countries. Drinking water supplies for large populations can have concentrations much higher than the permissible levels (for most European countries and the United States, 10 μg As per L; elsewhere, 50 μg As per L). Arsenic analysis requires high-end instruments, which are largely unavailable in developing countries. Bioassays based on genetically engineered bacteria have been proposed as suitable alternatives but such tests would profit from better standardization and direct incorporation into sensing devices. The goal of this work was to develop and test microfluidic devices in which bacterial bioreporters could be embedded, exposed and reporter signals detected, as a further step towards a complete miniaturized bacterial biosensor. The signal element in the biosensor is a nonpathogenic laboratory strain of Escherichia coli, which produces a variant of the green fluorescent protein after contact to arsenite and arsenate. E. coli bioreporter cells were encapsulated in agarose beads and incorporated into a microfluidic device where they were captured in 500 × 500 μm(2) cages and exposed to aqueous samples containing arsenic. Cell-beads frozen at -20 °C in the microfluidic chip retained inducibility for up to a month and arsenic samples with 10 or 50 μg L(-1) could be reproducibly discriminated from the blank. In the 0-50 μg L(-1) range and with an exposure time of 200 minutes, the rate of signal increase was linearly proportional to the arsenic concentration. The time needed to reliably and reproducibly detect a concentration of 50 μg L(-1) was 75-120 minutes, and 120-180 minutes for a concentration of 10 μg L(-1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alpha1-Acid glycoprotein (AAG) or orosomucoid was purified to homogeneity from human plasma by a separate two-step method using chromatography on immobilized Cibacron Blue F3G-A to cross-linked agarose and chromatography on hydroxyapatite. The conditions for the pre-purification of AAG by chromatography on immobilized Cibacron Blue F3G-A were first optimized using different buffer systems with different pH values. The overall yield of the combined techniques was 80% and ca. 12 mg of AAG were purified from an initial total amount of ca. 15 mg in a ca. 40 ml sample of human plasma. This method was applied to the purification of AAG samples corresponding to the three main phenotypes of the protein (FI*S/A, F1/A and S/A), from individual human plasma previously phenotyped for AAG. A study by isoelectric focusing with carrier ampholytes showed that the microheterogeneity of the purified F1*S/A, F1/A and S/A AAG samples was similar to that of AAG in the corresponding plasma, thus suggesting that no apparent desialylation of the glycoprotein occurred during the purification steps. This method was also applied to the purification of AAG samples corresponding to rare phenotypes of the protein (F1/A*AD, S/A*X0 and F1/A*C1) and the interactions of these variants with immobilized copper(II) ions were then studied at pH 7, by chromatography on an iminodiacetate Sepharose-Cu(II) gel. It was found that the different variants encoded by the first of the two genes coding for AAG in humans (i.e. the F1 and S variants) interacted non-specifically with the immobilized ligand, whereas those encoded by the second gene of AAG (i.e. the A, AD, X0 and C1 variants) strongly bound to immobilized Cu(II) ions. These results suggested that chromatography on an immobilized affinity Cu(II) adsorbent could be helpful to distinguish between the respective products of the two highly polymorphic genes which code for human AAG.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to develop novel daptomycin-loaded acrylic microparticles with improved release profiles and antibacterial activity against two clinically relevant methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains (MSSA and MRSA, respectively). Daptomycin was encapsulated into poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles by a double emulsion-solvent evaporation method. For comparison purposes similar formulations were prepared with vancomycin. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties, in vitro release and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. The addition of EUD to the formulation caused a shift in the surface charge of the particles from negative zeta potential values (100% PMMA formulations) to strongly positive. It also improved daptomycin encapsulation efficiency and release, whereas vancomycin encapsulation and release were strongly hindered. Plain and antibiotic-loaded particles presented comparable biocompatibility profiles. The antibacterial activity of the particles was assessed by isothermal microcalorimetry against both MSSA and MRSA. Daptomycin-loaded PMMA-EUD particles presented the highest antibacterial activity against both strains. The addition of 30% EUD to the daptomycin-loaded PMMA particles caused a 40- and 20-fold decrease in the minimum inhibitory (MIC) and bactericidal concentration (MBC) values, respectively, when compared to the 100% PMMA formulations. On the other hand, vancomycin-loaded microparticles presented the highest antibacterial activity in PMMA particles. Unlike conventional methods, isothermal microcalorimetry proved to be a real-time, sensitive and accurate method for assessment of antibacterial activity of antibiotic-loaded polymeric microparticles. Finally, the addition of EUD to formulations proved to be a powerful strategy to improve daptomycin encapsulation efficiency and release, and consequently improving the microparticles activity against two relevant S. aureus strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal models of infective endocarditis (IE) induced by high-grade bacteremia revealed the pathogenic roles of Staphylococcus aureus surface adhesins and platelet aggregation in the infection process. In humans, however, S. aureus IE possibly occurs through repeated bouts of low-grade bacteremia from a colonized site or intravenous device. Here we used a rat model of IE induced by continuous low-grade bacteremia to explore further the contributions of S. aureus virulence factors to the initiation of IE. Rats with aortic vegetations were inoculated by continuous intravenous infusion (0.0017 ml/min over 10 h) with 10(6) CFU of Lactococcus lactis pIL253 or a recombinant L. lactis strain expressing an individual S. aureus surface protein (ClfA, FnbpA, BCD, or SdrE) conferring a particular adhesive or platelet aggregation property. Vegetation infection was assessed 24 h later. Plasma was collected at 0, 2, and 6 h postinoculation to quantify the expression of tumor necrosis factor (TNF), interleukin 1α (IL-1α), IL-1β, IL-6, and IL-10. The percentage of vegetation infection relative to that with strain pIL253 (11%) increased when binding to fibrinogen was conferred on L. lactis (ClfA strain) (52%; P = 0.007) and increased further with adhesion to fibronectin (FnbpA strain) (75%; P < 0.001). Expression of fibronectin binding alone was not sufficient to induce IE (BCD strain) (10% of infection). Platelet aggregation increased the risk of vegetation infection (SdrE strain) (30%). Conferring adhesion to fibrinogen and fibronectin favored IL-1β and IL-6 production. Our results, with a model of IE induced by low-grade bacteremia, resembling human disease, extend the essential role of fibrinogen binding in the initiation of S. aureus IE. Triggering of platelet aggregation or an inflammatory response may contribute to or promote the development of IE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During blood banking, erythrocytes undergo storage lesions, altering or degrading their metabolism, rheological properties, and protein content. Carbonylation is a hallmark of protein oxidative lesions, thus of red blood cell oxidative stress. In order to improve global erythrocyte protein carbonylation assessment, subcellular fractionation has been established, allowing us to work on four different protein populations, namely soluble hemoglobin, hemoglobin-depleted soluble fraction, integral membrane and cytoskeleton membrane protein fractions. Carbonylation in erythrocyte-derived microparticles has also been investigated. Carbonylated proteins were derivatized with 2,4-dinitrophenylhydrazine (2,4-DNPH) and quantified by western blot analyses. In particular, carbonylation in the cytoskeletal membrane fraction increased remarkably between day 29 and day 43 (P<0.01). Moreover, protein carbonylation within microparticles released during storage showed a two-fold increase along the storage period (P<0.01). As a result, carbonylation of cytoplasmic and membrane protein fractions differs along storage, and the present study allows explaining two distinct steps in global erythrocyte protein carbonylation evolution during blood banking. This article is part of a Special Issue entitled: Integrated omics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of culture-independent molecular screening techniques, especially based on 16S rRNA gene sequences, has allowed microbiologists to examine a facet of microbial diversity not necessarily reflected by the results of culturing studies. The bacterial community structure was studied for a pesticide-contaminated site that was subsequently remediated using an efficient degradative strain Arthrobacter protophormiae RKJ100. The efficiency of the bioremediation process was assessed by monitoring the depletion of the pollutant, and the effect of addition of an exogenous strain on the existing soil community structure was determined using molecular techniques. The 16S rRNA gene pool amplified from the soil metagenome was cloned and restriction fragment length polymorphism studies revealed 46 different phylotypes on the basis of similar banding patterns. Sequencing of representative clones of each phylotype showed that the community structure of the pesticide-contaminated soil was mainly constituted by Proteobacteria and Actinomycetes. Terminal restriction fragment length polymorphism analysis showed only nonsignificant changes in community structure during the process of bioremediation. Immobilized cells of strain RKJ100 enhanced pollutant degradation but seemed to have no detectable effects on the existing bacterial community structure.