95 resultados para traffic generated particles

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fine particulate matter from traffic increases mortality and morbidity. An important source of traffic particles is brake wear. American studies reported cars to emit break wear particles at a rate of about 11mg/km to 20mg/km of driven distance. A German study estimated that break wear contributes about 12.5% to 21% of the total traffic particle emissions. The goal of this study was to build a system that allows the study of brake wear particle emissions during different braking behaviours of different car and brake types. The particles should be characterize in terms of size, number, metal, and elemental and organic carbon composition. In addition, the influence of different deceleration schemes on the particle composition and size distribution should be studied. Finally, this system should allow exposing human cell cultures to these particles. An exposure-box (0.25 cubic-m volume) was built that can be mounted around a car's braking system. This allows exposing cells to fresh brake wear particles. Concentrations of particle numbers, mass and surface, metals, and carbon compounds were quantified. Tests were conducted with A549 lung epithelial cells. Five different cars and two typical braking behaviours (full stop and normal deceleration) were tested. Particle number and size distribution was analysed for the first six minutes. In this time, two braking events occurred. Full stop produced significantly higher particle concentrations than normal deceleration (average of 23'000 vs. 10'400 #/cm3, p= 0.016). The particle number distribution was bi-modal with one peak at 60 to 100 nm (depending on the tested car and braking behaviour) and a second peak at 200 to 400 nm. Metal concentrations varied depending on the tested car type. Iron (range of 163 to 15'600 μg/m3) and Manganese (range of 0.9 to 135 μg/m3) were present in all samples, while Copper was absent in some samples (<6 to 1220 μg/m3). The overall "fleet" metal ratio was Fe:Cu:Mn = 128:14:1. Temperature and humidity varied little. A549-cells were successfully exposed in the various experimental settings and retained their viability. Culture supernatant was stored and cell culture samples were fixated to test for inflammatory response. Analysis of these samples is ongoing. The established system allowed testing brake wear particle emissions from real-world cars. The large variability of chemical composition and emitted amounts of brake wear particles between car models seems to be related to differences between brake pad compositions of different producers. Initial results suggest that the conditions inside the exposure box allow exposing human lung epithelial cells to freshly produced brake wear particles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exposure to fine particles and noise has been linked to cardiovascular diseases and elevated cardiovascular mortality affecting the worldwide population. Residence and/or work in proximity to emission sources as for example road traffic leads to an elevated exposure and a higher risk for adverse health effects. Highway maintenance workers spend most of their work time in traffic and are exposed regularly to particles and noise. The aims of this thesis were to provide a better understanding of the workers' mixed exposure to particles and noise and to assess cardiopulmonary short term health effects in relation to this exposure. Exposure and health data were collected in collaboration with 8 maintenance centers of the Swiss Road Maintenance Services located in the cantons Bern, Fribourg and Vaud in western Switzerland. Repeated measurements with 18 subjects were conducted during 50 non-consecutive work shifts between Mai 2010 and February 2012, equally distributed over all seasons. In the first part of this thesis we tested and validated measurements of ultrafine particles with a miniature diffusion size classifier (miniDiSC) - a novel particle counting device that was used for the exposure assessment during highway maintenance work. We found that particle numbers and average particle size measured by the miniDiSC were highly correlated with data from the P-TRAK, a condensation particle counter (CPC), as well as from a scanning mobility particle sizer (SMPS). However, the miniDiSC measured significantly more particles than the P-TRAK and significantly less than the SMPS in its full size range. Our data suggests that the instrument specific cutoffs were the main reason for the different particle counts. The first main objective of this thesis was to investigate the exposure of highway maintenance workers to air pollutants and noise, in relation to the different maintenance activities. We have seen that the workers are regularly exposed to high particle and noise levels. This was a consequence of close proximity to highway traffic and the use of motorized working equipment such as brush cutters, chain saws, generators and pneumatic hammers during which the highest exposure levels occurred. Although exposure to air pollutants were not critical if compared to occupational exposure limits, the elevated exposure to particles and noise may lead to a higher risk for cardiovascular diseases in this worker population. The second main objective was to investigate cardiopulmonary short-term health effects in relation to the particle and noise exposure during highway maintenance work. We observed a PM2.5 related increase of the acute-phase inflammation markers C-reactive protein and serum amyloid A and a decrease of TNFa. Heart rate variability increased as a consequence of particle as well as noise exposure. Increased high frequency power indicated a stronger parasympathetic influence on the heart. Elevated noise levels during recreational time, after work, were related to increased blood pressure. Our data confirmed that highway maintenance workers are exposed to elevated levels of particles and noise as compared to the average population. This exposure poses a cardiovascular health risk and it is therefore important to make efforts to better protect the workers health. The use of cleaner machines during maintenance work would be a major step to improve the workers' situation. Furthermore, regulatory policies with the aim of reducing combustion and non-combustion emissions from road traffic are important for the protection of workers in traffic environments and the entire population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. Results: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. Conclusion: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress. [Authors]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Knudsen flow reactor has been used to quantify surface functional groups on aerosols collected in the field. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. In the first part of this work, the reactivity of different probe gases on laboratory-generated aerosols (limonene SOA, Pb(NO3)2, Cd(NO3)2) and diesel reference soot (SRM 2975) has been studied. Five probe gases have been selected for the quantitative determination of important functional groups: N(CH3)3 (for the titration of acidic sites), NH2OH (for carbonyl functions), CF3COOH and HCl (for basic sites of different strength), and O3 (for oxidizable groups). The second part describes a field campaign that has been undertaken in several bus depots in Switzerland, where ambient fine and ultrafine particles were collected on suitable filters and quantitatively investigated using the Knudsen flow reactor. Results point to important differences in the surface reactivity of ambient particles, depending on the sampling site and season. The particle surface appears to be multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also indicate that the surface of ambient particles was characterized by a high density of carbonyl functions (reactivity towards NH2OH probe in the range 0.26-6 formal molecular monolayers) and a low density of acidic sites (reactivity towards N(CH3)3 probe in the range 0.01-0.20 formal molecular monolayer). Kinetic parameters point to fast redox reactions (uptake coefficient ?0>10-3 for O3 probe) and slow acid-base reactions (?0<10-4 for N(CH3)3 probe) on the particle surface. [Authors]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Brake wear dust is a significant component of traffic emissions and has been linked to adverse health effects. Previous research found a strong oxidative stress response in cells exposed to freshly generated brake wear dust. We characterized aged dust collected from passenger vehicles, using microscopy and elemental analyses. Reactive oxygen species (ROS) generation was measured with acellular and cellular assays using 2′7-dichlorodihydrofluorescein dye. Microscopy analyses revealed samples to be heterogeneous particle mixtures with few nanoparticles detected. Several metals, primarily iron and copper, were identified. High oxygen concentrations suggested that the elements were oxidized. ROS were detected in the cell-free fluorescent test, while exposed cells were not dramatically activated by the concentrations used. The fact that aged brake wear samples have lower oxidative stress potential than fresh ones may relate to the highly oxidized or aged state of these particles, as well as their larger size and smaller reactive surface area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction : The redox properties of fine/ultrafine particles as well as nanoparticles (NP) are suggested to be important to explain their biological activity and could constitute a novel and promising metric for hazard evaluation. The acellular in vitro dithiothreitol (DTT) assay allows measuring this property. Objectives : (1) to evaluate sampling requirements for fine/ultrafine particle allowing measurement of their oxidative potential (2) to apply the methodology to occupational situations where particle from combustion sources are generated. Material and method : Sampling parameters (type of filters and loaded amount) and storage duration affecting the DTT measurements were evaluated. Based on these results, a methodological approach was defined and applied in two occupational situations where diesel and other combustion particles are present (toll station in a tunnel and mechanical yard for bus reparation). Results : Teflon filters loaded with diesel particles were found more suitable for the DTT assay, due to their better chemical inertness compared to quartz filters: after storage durations larger than 150 hours, an increased reactivity toward DTT was observed only with quartz filters. Reactivity was linearly correlated to the loaded mass until about 1000 μg/filter. Different redox reactivities were determined in both working places, with the mechanical yard presenting a higher DTT consumption rate. Discussion and conclusions : These results demonstrate the feasibility of this method to determine the oxidative potential of fine/ultrafine particles in occupational situations. We propose to include this approach for hazard assessment of work places with exposure to manufactured and other NP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phagocytosis, whether of food particles in protozoa or bacteria and cell remnants in the metazoan immune system, is a conserved process. The particles are taken up into phagosomes, which then undergo complex remodeling of their components, called maturation. By using two-dimensional gel electrophoresis and mass spectrometry combined with genomic data, we identified 179 phagosomal proteins in the amoeba Dictyostelium, including components of signal transduction, membrane traffic, and the cytoskeleton. By carrying out this proteomics analysis over the course of maturation, we obtained time profiles for 1,388 spots and thus generated a dynamic record of phagosomal protein composition. Clustering of the time profiles revealed five clusters and 24 functional groups that were mapped onto a flow chart of maturation. Two heterotrimeric G protein subunits, Galpha4 and Gbeta, appeared at the earliest times. We showed that mutations in the genes encoding these two proteins produce a phagocytic uptake defect in Dictyostelium. This analysis of phagosome protein dynamics provides a reference point for future genetic and functional investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE: We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miniature diffusion size classifiers (miniDiSC) are novel handheld devices to measure ultrafine particles (UFP). UFP have been linked to the development of cardiovascular and pulmonary diseases; thus, detection and quantification of these particles are important for evaluating their potential health hazards. As part of the UFP exposure assessments of highwaymaintenance workers in western Switzerland, we compared a miniDiSC with a portable condensation particle counter (P-TRAK). In addition, we performed stationary measurements with a miniDiSC and a scanning mobility particle sizer (SMPS) at a site immediately adjacent to a highway. Measurements with miniDiSC and P-TRAK correlated well (correlation of r = 0.84) but average particle numbers of the miniDiSC were 30%âeuro"60% higher. This difference was significantly increased for mean particle diameters below 40 nm. The correlation between theminiDiSC and the SMPSduring stationary measurements was very high (r = 0.98) although particle numbers from the miniDiSC were 30% lower. Differences between the three devices were attributed to the different cutoff diameters for detection. Correction for this size dependent effect led to very similar results across all counters.We did not observe any significant influence of other particle characteristics. Our results suggest that the miniDiSC provides accurate particle number concentrations and geometric mean diameters at traffic-influenced sites, making it a useful tool for personal exposure assessment in such settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, and both have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. OBJECTIVES: We aimed to investigate short-term health effects related to particle and noise exposure. METHODS: We monitored 18 maintenance workers, during as many as five 24-hour periods from a total of 50 observation days. We measured their exposure to fine particulate matter (PM2.5), ultrafine particles, noise, and the cardiopulmonary health endpoints: blood pressure, pro-inflammatory and pro-thrombotic markers in the blood, lung function and fractional exhaled nitric oxide (FeNO) measured approximately 15 hours post-work. Heart rate variability was assessed during a sleep period approximately 10 hours post-work. RESULTS: PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased HF and LF power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and non-significantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. CONCLUSIONS: Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.