4 resultados para syntactic-semantic approach
em Université de Lausanne, Switzerland
Resumo:
In the past, research in ontology learning from text has mainly focused on entity recognition, taxonomy induction and relation extraction. In this work we approach a challenging research issue: detecting semantic frames from texts and using them to encode web ontologies. We exploit a new generation Natural Language Processing technology for frame detection, and we enrich the frames acquired so far with argument restrictions provided by a super-sense tagger and domain specializations. The results are encoded according to a Linguistic MetaModel, which allows a complete translation of lexical resources and data acquired from text, enabling custom transformations of the enriched frames into modular ontology components.
Resumo:
In this paper we propose a novel unsupervised approach to learning domain-specific ontologies from large open-domain text collections. The method is based on the joint exploitation of Semantic Domains and Super Sense Tagging for Information Retrieval tasks. Our approach is able to retrieve domain specific terms and concepts while associating them with a set of high level ontological types, named supersenses, providing flat ontologies characterized by very high accuracy and pertinence to the domain.
Resumo:
abstract:occasional Adnominal Idiom Modification - A Cognitive Linguistic Approach From a cognitive-linguistic perspective, this paper explores alternative types of adnoniinal modification in occasional variants of English verbal idioms. Being discussed against data extracted from the British National Corpiis (BNC), the model claims that in idioni-production idiomatic constructions are activated as complex linguistic schemas to code a context-specific target-conceptualisation. Adnominal pre- and postmodifications are one specific form of creative alteration to adapt the idiom for this purpose. Semantically, idiom-interna1 NPextension is not a uniforni process. It is necessary to distinguish two systematic types of adnominal modification: external and internal modification (Ernst 1981). While external NPmodification has adverbial function, ¡.e. it modifies the idiom as a unit, internal modification directly applies to the head-noun and thus depends on the degree of motivation and analysability of a given idiom. Following the cognitive-linguistic framework, these dimensions of idiom-transparency result from the language user's ability to remotivate the bipartite semantic structure by conceptual metaphors and metonymies.
Resumo:
La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.