3 resultados para synchronization protocols
em Université de Lausanne, Switzerland
Resumo:
Synchronization of data coming from different sources is of high importance in biomechanics to ensure reliable analyses. This synchronization can either be performed through hardware to obtain perfect matching of data, or post-processed digitally. Hardware synchronization can be achieved using trigger cables connecting different devices in many situations; however, this is often impractical, and sometimes impossible in outdoors situations. The aim of this paper is to describe a wireless system for outdoor use, allowing synchronization of different types of - potentially embedded and moving - devices. In this system, each synchronization device is composed of: (i) a GPS receiver (used as time reference), (ii) a radio transmitter, and (iii) a microcontroller. These components are used to provide synchronized trigger signals at the desired frequency to the measurement device connected. The synchronization devices communicate wirelessly, are very lightweight, battery-operated and thus very easy to set up. They are adaptable to every measurement device equipped with either trigger input or recording channel. The accuracy of the system was validated using an oscilloscope. The mean synchronization error was found to be 0.39 μs and pulses are generated with an accuracy of <2 μs. The system provides synchronization accuracy about two orders of magnitude better than commonly used post-processing methods, and does not suffer from any drift in trigger generation.
Resumo:
OBJECTIVE: To investigate the planning of subgroup analyses in protocols of randomised controlled trials and the agreement with corresponding full journal publications. DESIGN: Cohort of protocols of randomised controlled trial and subsequent full journal publications. SETTING: Six research ethics committees in Switzerland, Germany, and Canada. DATA SOURCES: 894 protocols of randomised controlled trial involving patients approved by participating research ethics committees between 2000 and 2003 and 515 subsequent full journal publications. RESULTS: Of 894 protocols of randomised controlled trials, 252 (28.2%) included one or more planned subgroup analyses. Of those, 17 (6.7%) provided a clear hypothesis for at least one subgroup analysis, 10 (4.0%) anticipated the direction of a subgroup effect, and 87 (34.5%) planned a statistical test for interaction. Industry sponsored trials more often planned subgroup analyses compared with investigator sponsored trials (195/551 (35.4%) v 57/343 (16.6%), P<0.001). Of 515 identified journal publications, 246 (47.8%) reported at least one subgroup analysis. In 81 (32.9%) of the 246 publications reporting subgroup analyses, authors stated that subgroup analyses were prespecified, but this was not supported by 28 (34.6%) corresponding protocols. In 86 publications, authors claimed a subgroup effect, but only 36 (41.9%) corresponding protocols reported a planned subgroup analysis. CONCLUSIONS: Subgroup analyses are insufficiently described in the protocols of randomised controlled trials submitted to research ethics committees, and investigators rarely specify the anticipated direction of subgroup effects. More than one third of statements in publications of randomised controlled trials about subgroup prespecification had no documentation in the corresponding protocols. Definitive judgments regarding credibility of claimed subgroup effects are not possible without access to protocols and analysis plans of randomised controlled trials.
Resumo:
OBJECTIVES: To investigate the frequency of interim analyses, stopping rules, and data safety and monitoring boards (DSMBs) in protocols of randomized controlled trials (RCTs); to examine these features across different reasons for trial discontinuation; and to identify discrepancies in reporting between protocols and publications. STUDY DESIGN AND SETTING: We used data from a cohort of RCT protocols approved between 2000 and 2003 by six research ethics committees in Switzerland, Germany, and Canada. RESULTS: Of 894 RCT protocols, 289 prespecified interim analyses (32.3%), 153 stopping rules (17.1%), and 257 DSMBs (28.7%). Overall, 249 of 894 RCTs (27.9%) were prematurely discontinued; mostly due to reasons such as poor recruitment, administrative reasons, or unexpected harm. Forty-six of 249 RCTs (18.4%) were discontinued due to early benefit or futility; of those, 37 (80.4%) were stopped outside a formal interim analysis or stopping rule. Of 515 published RCTs, there were discrepancies between protocols and publications for interim analyses (21.1%), stopping rules (14.4%), and DSMBs (19.6%). CONCLUSION: Two-thirds of RCT protocols did not consider interim analyses, stopping rules, or DSMBs. Most RCTs discontinued for early benefit or futility were stopped without a prespecified mechanism. When assessing trial manuscripts, journals should require access to the protocol.