10 resultados para swd: Psychoakustische Messung

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanopartikel sind sehr kleine Partikel, die gezielt so hergestellt sind, dass ihr Durchmesser kleiner als etwa 100 nm ist. Sie werden in der Industrie eingesetzt, weil Materialien mit solch kleinen Dimensionen oft neue Eigenschaften aufweisen, die sie vom Ursprungsmaterial unterscheidet. Das Potenzial für mögliche Gesundheits- und Umwelteffekte von Nanomaterialien wird zurzeit intensiv diskutiert, denn die möglichen Effekte der neuen Eigenschaften auf Umwelt und Gesundheit sind erst unvollständig geklärt. Für die Abklärung der Risiken ist es wichtig, Informationen über die möglichen Expositionen und mögliche Freisetzungen in die Umwelt zu haben. Bisher wurden aber Daten über eingesetzte Stoffmengen und Materialarten selten systematisch erhoben. Wir haben in der Schweiz eine repräsentative Studie durchgeführt, um den Einsatz von Nanopartikeln im gesamten Industriesektor abschätzen zu können. Diese Studie ist unseres Wissens weltweit die erste solche Studie. Sie verwendete die Definition von Nanopartikeln, welche Nanofasern und Agglomerate von Nanopartikeln mit einschließt. Geschätzte 1.300 Arbeiter in 600 Firmen sind direkt an einer Nanopartikelanwendung beteiligt und könnten somit exponiert werden. Dies sind etwa 0,6% der Firmen und etwa 0,08% der Arbeiter des Schweizer Produktionssektors. Um nun zu bestimmen, ob solche Arbeiter mit Nanopartikel in Kontakt kommen oder nicht, stehen verschiedene Messmethoden zur Verfügung. Die aktuelle Technik erlaubt eine quantitative Messung der Anzahl der Partikel in der Luft, deren Masse oder auch Oberfläche. Diese Messgrößen allein geben zwar Hinweise auf die Präsenz von Nanopartikeln, die möglichen Gesundheitseffekte einer Exposition sind aber erst unvollständig abgeklärt und erlauben keine abschließende Risikoanalyse für den Arbeitsplatz. Mehrere Aktionspläne für die Entwicklung eines sicheren und nachhaltigen Umgangs mit Nanomaterialien wurden in den letzten Jahren gestartet (EU, Schweiz). Internationale und nationale Organisationen entwickelten Guidelines und Empfehlungen für industrielle Anwendungen (Internationale Organisation für Normung - ISO, Schweizerische Unfallversicherungsanstalt - SUVA, Bundesanstalt für Arbeitsschutz und Arbeitsmedizin - BAuA, zusammen mit dem Verband der Chemischen Industrie - VCI). Diese generellen Informationen müssen nun in die Industrie transferiert und an die spezifischen Bedürfnisse der betroffenen Unternehmen angepasst werden. Die aufgezeigte, relativ geringe Verbreitung von Nanopartikelanwendungen in der Industrie weist darauf hin, dass heute Schutzmaßnahmen noch proaktiv und kostengünstig entwickelt und eingeführt werden können. Aber sollte die vorhergesagte "Nano-Revolution" wirklich eintreten, ist die Zeit gekommen, jetzt aktiv zu werden. [Autoren]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : The occupational health risk involved with handling nanoparticles is the probability that a worker will experience an adverse health effect: this is calculated as a function of the worker's exposure relative to the potential biological hazard of the material. Addressing the risks of nanoparticles requires therefore knowledge on occupational exposure and the release of nanoparticles into the environment as well as toxicological data. However, information on exposure is currently not systematically collected; therefore this risk assessment lacks quantitative data. This thesis aimed at, first creating the fundamental data necessary for a quantitative assessment and, second, evaluating methods to measure the occupational nanoparticle exposure. The first goal was to determine what is being used where in Swiss industries. This was followed by an evaluation of the adequacy of existing measurement methods to assess workplace nanopaiticle exposure to complex size distributions and concentration gradients. The study was conceived as a series of methodological evaluations aimed at better understanding nanoparticle measurement devices and methods. lt focused on inhalation exposure to airborne particles, as respiration is considered to be the most important entrance pathway for nanoparticles in the body in terms of risk. The targeted survey (pilot study) was conducted as a feasibility study for a later nationwide survey on the handling of nanoparticles and the applications of specific protection means in industry. The study consisted of targeted phone interviews with health and safety officers of Swiss companies that were believed to use or produce nanoparticles. This was followed by a representative survey on the level of nanoparticle usage in Switzerland. lt was designed based on the results of the pilot study. The study was conducted among a representative selection of clients of the Swiss National Accident Insurance Fund (SUVA), covering about 85% of Swiss production companies. The third part of this thesis focused on the methods to measure nanoparticles. Several pre- studies were conducted studying the limits of commonly used measurement devices in the presence of nanoparticle agglomerates, This focus was chosen, because several discussions with users and producers of the measurement devices raised questions about their accuracy measuring nanoparticle agglomerates and because, at the same time, the two survey studies revealed that such powders are frequently used in industry. The first preparatory experiment focused on the accuracy of the scanning mobility particle sizer (SMPS), which showed an improbable size distribution when measuring powders of nanoparticle agglomerates. Furthermore, the thesis includes a series of smaller experiments that took a closer look at problems encountered with other measurement devices in the presence of nanoparticle agglomerates: condensation particle counters (CPC), portable aerosol spectrometer (PAS) a device to estimate the aerodynamic diameter, as well as diffusion size classifiers. Some initial feasibility tests for the efficiency of filter based sampling and subsequent counting of carbon nanotubes (CNT) were conducted last. The pilot study provided a detailed picture of the types and amounts of nanoparticles used and the knowledge of the health and safety experts in the companies. Considerable maximal quantities (> l'000 kg/year per company) of Ag, Al-Ox, Fe-Ox, SiO2, TiO2, and ZnO (mainly first generation particles) were declared by the contacted Swiss companies, The median quantity of handled nanoparticles, however, was 100 kg/year. The representative survey was conducted by contacting by post mail a representative selection of l '626 SUVA-clients (Swiss Accident Insurance Fund). It allowed estimation of the number of companies and workers dealing with nanoparticles in Switzerland. The extrapolation from the surveyed companies to all companies of the Swiss production sector suggested that l'309 workers (95%-confidence interval l'073 to l'545) of the Swiss production sector are potentially exposed to nanoparticles in 586 companies (145 to l'027). These numbers correspond to 0.08% (0.06% to 0.09%) of all workers and to 0.6% (0.2% to 1.1%) of companies in the Swiss production sector. To measure airborne concentrations of sub micrometre-sized particles, a few well known methods exist. However, it was unclear how well the different instruments perform in the presence of the often quite large agglomerates of nanostructured materials. The evaluation of devices and methods focused on nanoparticle agglomerate powders. lt allowed the identification of the following potential sources of inaccurate measurements at workplaces with considerable high concentrations of airborne agglomerates: - A standard SMPS showed bi-modal particle size distributions when measuring large nanoparticle agglomerates. - Differences in the range of a factor of a thousand were shown between diffusion size classifiers and CPC/SMPS. - The comparison between CPC/SMPS and portable aerosol Spectrometer (PAS) was much better, but depending on the concentration, size or type of the powders measured, the differences were still of a high order of magnitude - Specific difficulties and uncertainties in the assessment of workplaces were identified: the background particles can interact with particles created by a process, which make the handling of background concentration difficult. - Electric motors produce high numbers of nanoparticles and confound the measurement of the process-related exposure. Conclusion: The surveys showed that nanoparticles applications exist in many industrial sectors in Switzerland and that some companies already use high quantities of them. The representative survey demonstrated a low prevalence of nanoparticle usage in most branches of the Swiss industry and led to the conclusion that the introduction of applications using nanoparticles (especially outside industrial chemistry) is only beginning. Even though the number of potentially exposed workers was reportedly rather small, it nevertheless underscores the need for exposure assessments. Understanding exposure and how to measure it correctly is very important because the potential health effects of nanornaterials are not yet fully understood. The evaluation showed that many devices and methods of measuring nanoparticles need to be validated for nanoparticles agglomerates before large exposure assessment studies can begin. Zusammenfassung : Das Gesundheitsrisiko von Nanopartikel am Arbeitsplatz ist die Wahrscheinlichkeit dass ein Arbeitnehmer einen möglichen Gesundheitsschaden erleidet wenn er diesem Stoff ausgesetzt ist: sie wird gewöhnlich als Produkt von Schaden mal Exposition gerechnet. Für eine gründliche Abklärung möglicher Risiken von Nanomaterialien müssen also auf der einen Seite Informationen über die Freisetzung von solchen Materialien in die Umwelt vorhanden sein und auf der anderen Seite solche über die Exposition von Arbeitnehmenden. Viele dieser Informationen werden heute noch nicht systematisch gesarnmelt und felilen daher für Risikoanalysen, Die Doktorarbeit hatte als Ziel, die Grundlagen zu schaffen für eine quantitative Schatzung der Exposition gegenüber Nanopartikel am Arbeitsplatz und die Methoden zu evaluieren die zur Messung einer solchen Exposition nötig sind. Die Studie sollte untersuchen, in welchem Ausmass Nanopartikel bereits in der Schweizer Industrie eingesetzt werden, wie viele Arbeitnehrner damit potentiel] in Kontakt komrrien ob die Messtechnologie für die nötigen Arbeitsplatzbelastungsmessungen bereits genügt, Die Studie folcussierte dabei auf Exposition gegenüber luftgetragenen Partikel, weil die Atmung als Haupteintrittspforte iïlr Partikel in den Körper angesehen wird. Die Doktorarbeit besteht baut auf drei Phasen auf eine qualitative Umfrage (Pilotstudie), eine repräsentative, schweizerische Umfrage und mehrere technische Stndien welche dem spezitischen Verständnis der Mëglichkeiten und Grenzen einzelner Messgeräte und - teclmikeri dienen. Die qualitative Telephonumfrage wurde durchgeführt als Vorstudie zu einer nationalen und repräsentativen Umfrage in der Schweizer Industrie. Sie zielte auf Informationen ab zum Vorkommen von Nanopartikeln, und den angewendeten Schutzmassnahmen. Die Studie bestand aus gezielten Telefoninterviews mit Arbeit- und Gesundheitsfachpersonen von Schweizer Unternehmen. Die Untemehmen wurden aufgrund von offentlich zugànglichen lnformationen ausgewählt die darauf hinwiesen, dass sie mit Nanopartikeln umgehen. Der zweite Teil der Dolctorarbeit war die repräsentative Studie zur Evalniernng der Verbreitnng von Nanopaitikelanwendungen in der Schweizer lndustrie. Die Studie baute auf lnformationen der Pilotstudie auf und wurde mit einer repräsentativen Selektion von Firmen der Schweizerischen Unfall Versicherungsanstalt (SUVA) durchgeüihxt. Die Mehrheit der Schweizerischen Unternehmen im lndustrieselctor wurde damit abgedeckt. Der dritte Teil der Doktorarbeit fokussierte auf die Methodik zur Messung von Nanopartikeln. Mehrere Vorstudien wurden dnrchgefîihrt, um die Grenzen von oft eingesetzten Nanopartikelmessgeräten auszuloten, wenn sie grösseren Mengen von Nanopartikel Agglomeraten ausgesetzt messen sollen. Dieser F okns wurde ans zwei Gründen gewählt: weil mehrere Dislcussionen rnit Anwendem und auch dem Produzent der Messgeràte dort eine Schwachstelle vermuten liessen, welche Zweifel an der Genauigkeit der Messgeräte aufkommen liessen und weil in den zwei Umfragestudien ein häufiges Vorkommen von solchen Nanopartikel-Agglomeraten aufgezeigt wurde. i Als erstes widmete sich eine Vorstndie der Genauigkeit des Scanning Mobility Particle Sizer (SMPS). Dieses Messgerät zeigte in Präsenz von Nanopartikel Agglorneraten unsinnige bimodale Partikelgrössenverteilung an. Eine Serie von kurzen Experimenten folgte, welche sich auf andere Messgeräte und deren Probleme beim Messen von Nanopartikel-Agglomeraten konzentrierten. Der Condensation Particle Counter (CPC), der portable aerosol spectrometer (PAS), ein Gerät zur Schàtzung des aerodynamischen Durchniessers von Teilchen, sowie der Diffusion Size Classifier wurden getestet. Einige erste Machbarkeitstests zur Ermittlnng der Effizienz von tilterbasierter Messung von luftgetragenen Carbon Nanotubes (CNT) wnrden als letztes durchgeiührt. Die Pilotstudie hat ein detailliiertes Bild der Typen und Mengen von genutzten Nanopartikel in Schweizer Unternehmen geliefert, und hat den Stand des Wissens der interviewten Gesundheitsschntz und Sicherheitsfachleute aufgezeigt. Folgende Typen von Nanopaitikeln wurden von den kontaktierten Firmen als Maximalmengen angegeben (> 1'000 kg pro Jahr / Unternehrnen): Ag, Al-Ox, Fe-Ox, SiO2, TiO2, und ZnO (hauptsächlich Nanopartikel der ersten Generation). Die Quantitäten von eingesetzten Nanopartikeln waren stark verschieden mit einem ein Median von 100 kg pro Jahr. ln der quantitativen Fragebogenstudie wurden l'626 Unternehmen brieflich kontaktiert; allesamt Klienten der Schweizerischen Unfallversicherringsanstalt (SUVA). Die Resultate der Umfrage erlaubten eine Abschätzung der Anzahl von Unternehmen und Arbeiter, welche Nanopartikel in der Schweiz anwenden. Die Hochrechnung auf den Schweizer lndnstriesektor hat folgendes Bild ergeben: ln 586 Unternehmen (95% Vertrauensintervallz 145 bis 1'027 Unternehmen) sind 1'309 Arbeiter potentiell gegenüber Nanopartikel exponiert (95%-Vl: l'073 bis l'545). Diese Zahlen stehen für 0.6% der Schweizer Unternehmen (95%-Vl: 0.2% bis 1.1%) und 0.08% der Arbeiternehmerschaft (95%-V1: 0.06% bis 0.09%). Es gibt einige gut etablierte Technologien um die Luftkonzentration von Submikrometerpartikel zu messen. Es besteht jedoch Zweifel daran, inwiefern sich diese Technologien auch für die Messurrg von künstlich hergestellten Nanopartikeln verwenden lassen. Aus diesem Grund folcussierten die vorbereitenden Studien für die Arbeitsplatzbeurteilnngen auf die Messung von Pulverri, welche Nan0partike1-Agg10merate enthalten. Sie erlaubten die ldentifikation folgender rnöglicher Quellen von fehlerhaften Messungen an Arbeitsplätzen mit erhöhter Luft-K0nzentrati0n von Nanopartikel Agglomeratenz - Ein Standard SMPS zeigte eine unglaubwürdige bimodale Partikelgrössenverteilung wenn er grössere Nan0par'til<e1Agg10merate gemessen hat. - Grosse Unterschiede im Bereich von Faktor tausend wurden festgestellt zwischen einem Diffusion Size Classiîier und einigen CPC (beziehungsweise dem SMPS). - Die Unterschiede zwischen CPC/SMPS und dem PAS waren geringer, aber abhängig von Grosse oder Typ des gemessenen Pulvers waren sie dennoch in der Grössenordnung von einer guten Grössenordnung. - Spezifische Schwierigkeiten und Unsicherheiten im Bereich von Arbeitsplatzmessungen wurden identitiziert: Hintergrundpartikel können mit Partikeln interagieren die während einem Arbeitsprozess freigesetzt werden. Solche Interaktionen erschweren eine korrekte Einbettung der Hintergrunds-Partikel-Konzentration in die Messdaten. - Elektromotoren produzieren grosse Mengen von Nanopartikeln und können so die Messung der prozessbezogenen Exposition stören. Fazit: Die Umfragen zeigten, dass Nanopartikel bereits Realitàt sind in der Schweizer Industrie und dass einige Unternehmen bereits grosse Mengen davon einsetzen. Die repräsentative Umfrage hat diese explosive Nachricht jedoch etwas moderiert, indem sie aufgezeigt hat, dass die Zahl der Unternehmen in der gesamtschweizerischen Industrie relativ gering ist. In den meisten Branchen (vor allem ausserhalb der Chemischen Industrie) wurden wenig oder keine Anwendungen gefunden, was schliessen last, dass die Einführung dieser neuen Technologie erst am Anfang einer Entwicklung steht. Auch wenn die Zahl der potentiell exponierten Arbeiter immer noch relativ gering ist, so unterstreicht die Studie dennoch die Notwendigkeit von Expositionsmessungen an diesen Arbeitsplätzen. Kenntnisse um die Exposition und das Wissen, wie solche Exposition korrekt zu messen, sind sehr wichtig, vor allem weil die möglichen Auswirkungen auf die Gesundheit noch nicht völlig verstanden sind. Die Evaluation einiger Geräte und Methoden zeigte jedoch, dass hier noch Nachholbedarf herrscht. Bevor grössere Mess-Studien durgefîihrt werden können, müssen die Geräte und Methodem für den Einsatz mit Nanopartikel-Agglomeraten validiert werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monitoring spielt eine wichtige Rolle zur Therapieevaluierung und Behandlungsentscheidung - solange es auf der Basis der Messung von entsprechenden klinischen oder validierten Surrogat-Markern stattfindet. Im Hinblick auf die Imatinib-Therapie scheint das «Therapeutische Drug-Monitoring» (TDM) ein nützlicher Ansatz zum Therapie-Monitoring der CML-Behandlung zu sein, welches die Plasmakonzentration des Arzneimittels als Marker zur Therapieüberwachung verwendet. Imatinib-Plasmakonzentrationen variieren beträchtlich von Patient zu Patient unter dem gleichen Dosierungsschema, aufgrund der interindividuell unterschiedlichen Pharmakokinetik des Arzneimittels. Für die Plasmaexposition wurde gezeigt, dass sie mit dem klinischen Outcome von CML-Patienten korreliert - sowohl im Bezug auf das Therapieansprechen als auch auf das Nebenwirkungsprofil. Es ist noch unklar, ob das TDM von Imatinib nur im Falle von klinischen Problemen Verwendung finden sollte oder ob CML-Patienten bereits von einem systematischen, präventiven «Routine»-Monitoring zur Therapieindividualisierung - zur Steuerung der Plasmakonzentration in einen therapeutischen Bereich - profitieren könnten, welches in letzter Zeit immer häufiger empfohlen wird. Um diese Fragestellung zu beantworten, nimmt eine prospektive, randomisiert kontrollierte Schweizer Studie CML-Patienten auf, die seit weniger als 5 Jahren mit Imatinib behandelt werden, und bietet das TDM zudem für alle Patienten im Falle von klinischen Problemen an.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

* Le monitoring (suivi) joue un rôle important pour un traitement et son évaluation - pour autant qu'il se base sur la mesure de marqueurs cliniques adéquats ou de substituts validés. * Pour ce qui est du traitement d'imatinib, le «therapeutic drug monitoring» (TDM) semble être une option utile pour le contrôle du traitement de la LMC. Il utilise la concentration plasmatique de ce médicament comme marqueur. * Les concentrations plasmatiques d'imatinib varient considérablement d'un patient à l'autre sous un même schéma posologique, en raison de la variabilité interindividuelle de sa pharmacocinétique. Il a été démontré que l'exposition plasmatique était en corrélation avec le résultat clinique des patients LMC - aussi bien pour la réponse au traitement que pour le profil d'effets indésirables. * Il n'est pas encore établi si le TDM de l'imatinib doit être utilisé que dans le cas de problèmes cliniques ou si les patients LMC peuvent déjà profiter d'un contrôle préventif systématique «de routine» - de manière à garder la concentration plasmatique dans des marges thérapeutiques. Cela est toujours plus recommandé ces derniers temps. * Pour répondre à cette question, une étude suisse prospective, randomisée et contrôlée recrute des patients LMC traités par imatinib depuis moins de 5 ans et propose en outre le TDM pour tous les patients en cas de problèmes cliniques. - * Monitoring spielt eine wichtige Rolle zur Therapieevaluierung und Behandlungsentscheidung - solange es auf der Basis der Messung von entsprechenden klinischen oder validierten Surrogat-Markern stattfindet. * Im Hinblick auf die Imatinib-Therapie scheint das «Therapeutische Drug-Monitoring» (TDM) ein nützlicher Ansatz zum Therapie-Monitoring der CML-Behandlung zu sein, welches die Plasmakonzentration des Arzneimittels als Marker zur Therapieüberwachung verwendet. * Imatinib-Plasmakonzentrationen variieren beträchtlich von Patient zu Patient unter dem gleichen Dosierungsschema, aufgrund der interindividuell unterschiedlichen Pharmakokinetik des Arzneimittels. Für die Plasmaexposition wurde gezeigt, dass sie mit dem klinischen Outcome von CML-Patienten korreliert - sowohl im Bezug auf das Therapieansprechen als auch auf das Nebenwirkungsprofil. * Es ist noch unklar, ob das TDM von Imatinib nur im Falle von klinischen Problemen Verwendung finden sollte oder ob CML-Patienten bereits von einem systematischen, präventiven «Routine»-Monitoring zur Therapieindividualisierung - zur Steuerung der Plasmakonzentration in einen therapeutischen Bereich - profitieren könnten, welches in letzter Zeit immer häufiger empfohlen wird. * Um diese Fragestellung zu beantworten, nimmt eine prospektive, randomisiert kontrollierte Schweizer Studie CML-Patienten auf, die seit weniger als 5 Jahren mit Imatinib behandelt werden, und bietet das TDM zudem für alle Patienten im Falle von klinischen Problemen an.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heute werden Nanopartikel zwar noch in relativ wenigen Produkten eingesetzt und meist kommen die Partikel im Produkt selbst als gebundene Partikel vor. Eine Exposition Endverbrauchers kann nicht ausgeschlossen werden, sie wird aber heute angesichts der geringen Verbreitung als eher unwahrscheinlich betrachtet. Was hingegen heute schon vermehrt vorkommen kann ist eine Exposition eines Arbeiters während des Herstellungs- oder Verarbeitungsprozesses eines Produkts. Auf diesen Bereich muss man daher ein grösseres Augenmerk legen. Um zu bestimmen, ob ein Arbeiter einer Nanopartikel-Exposition ausgesetzt ist, stehen heute verschiedene Messmethoden zur Verfügung. Die meisten Methoden fokussieren sich auf die Messung von Nanopartikel in der Luft, da die Aufnahme von Nanopartikel vor allem über die Atemwege stattfindet. Die heutige Technik erlaubt eine quantitative Ermittlung dieser Konzentration. Da die Technik mit dem Fokus auf Diesel- und Umweltpartikel entwickelt wurde, muss die Vertrauenswürdigkeit dieser Messgeräte für neue Industrie-Partikel mit spezifischen Eigenschaften erneut überprüft werden. Die Effizienz von drei CPC-Messgeräte (Condensation-Particle-Counters) Typen zum Nachweis der Luftkonzentration von Nanopartikel-Pulvern wurde miteinander verglichen. Als Resultat der Studie kann gefolgert werden, dass alle CPCs gleichermassen für die Abschätzung der Nanopartikel-Konzentration an Arbeitsplätzen in der Industrie verwendet werden können. Hierbei spielt es keine wesentliche Rolle, ob das Pulver eine hydrophile oder hydrophobe Oberfläche aufweist. Nur eines der drei hydrophilen Pulvern konnte mit dem Wasser CPC besser nachgewiesen werden als mit den anderen CPC desselben Herstellers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In den ersten Kapiteln werden die wichtigsten Prinzipien der Studienplanung dargestellt: Das Fundament jeder Studie ist das Festlegen der Hauptbeziehung, die untersucht werden soll. In weiteren Abschnitten erhalten Sie konkrete Angaben zur Messung des «Outcomes», zur Datenerfassung und Analyse der Daten. Das Management eines Forschungsprojektes, die ethischen Aspekte, das Schreiben eines Forschungsantrages und Tipps für das Schreiben einer Publikation sind weitere Themen dieses Buches.