5 resultados para soja RR
em Université de Lausanne, Switzerland
Resumo:
The classical Soja nappe, in NE Ticino, actually consists of two distinct tectonic units with verydifferent stratigraphic contents: (1) The smaller one, in the Val Soi (the type-locality), is by definitionthe Soja unit s.str.. It is pinched between Simano and Adula and consists of various Paleozoic gneissesand a dolomitic Triassic cover analogous to the Triassic of other Lower Penninic nappes. (2) The largerone extends along the Lago di Luzzone and continues eastwards through the Piz Terri mountain. Wename it the Luzzone-Terri nappe. It consists of: (a) a paragneiss series that presents striking similaritieswith the Permian of the Zone Houillère in Valais; (b) a Triassic cover typical of the Briançonnaisdomain where one clearly recognizes the St-Triphon Formation and other characteristic units of theBriançonnais Triassic; (c) a thick series of black calcschists and metapelites of Liassic age, similarto the cover of the neighbouring Gotthard massif. This stratigraphic superposition of a Liassic seriesof Helvetic type on a Briançonnais Triassic is unique in the Alps and has important paleogeographicconsequences. It is difficult to reconcile this observation with speculative reconstructions that proposean original position of the Briançonnais domain far from the Helvetic basins. Morover the Briançonnaischaracter of its Triassic series indicates an ultra-Adula origin of the Luzzone-Terri nappe.
Resumo:
While the incidence of sleep disorders is continuously increasing in western societies, there is a clear demand for technologies to asses sleep-related parameters in ambulatory scenarios. The present study introduces a novel concept of accurate sensor to measure RR intervals via the analysis of photo-plethysmographic signals recorded at the wrist. In a cohort of 26 subjects undergoing full night polysomnography, the wrist device provided RR interval estimates in agreement with RR intervals as measured from standard electrocardiographic time series. The study showed an overall agreement between both approaches of 0.05 ± 18 ms. The novel wrist sensor opens the door towards a new generation of comfortable and easy-to-use sleep monitors.