19 resultados para proper name
em Université de Lausanne, Switzerland
Resumo:
Recently, some scholars have highlighted a paradoxical phenomenon existing in democratic systems:Those people who show the greatest support for democracy are also those most willing to protestagainst the authority and to question it. However, if we consider the tasks of contemporary democraticcitizenship in a social-psychological perspective, this apparent paradox becomes understandable.Obedience to authority may ensure the continuity of social and group life, but disobedience may becrucial in stopping the authority relationship from degenerating into an authoritarian one. FollowingKelman and Hamilton's analysis of legitimacy dynamics, we consider how actions of disobediencemay serve the defence of democracy. In particular, by considering the different ways in which peoplerelate to the political system, the relevance of so-called value-oriented citizens in supportingdemocracy will be considered.
Resumo:
Myelination requires a massive increase in glial cell membrane synthesis. Here, we demonstrate that the acute phase of myelin lipid synthesis is regulated by sterol regulatory element-binding protein (SREBP) cleavage activation protein (SCAP), an activator of SREBPs. Deletion of SCAP in Schwann cells led to a loss of SREBP-mediated gene expression involving cholesterol and fatty acid synthesis. Schwann cell SCAP mutant mice show congenital hypomyelination and abnormal gait. Interestingly, aging SCAP mutant mice showed partial regain of function; they exhibited improved gait and produced small amounts of myelin indicating a slow SCAP-independent uptake of external lipids. Accordingly, extracellular lipoproteins partially rescued myelination by SCAP mutant Schwann cells. However, SCAP mutant myelin never reached normal thickness and had biophysical abnormalities concordant with abnormal lipid composition. These data demonstrate that SCAP-mediated regulation of glial lipogenesis is key to the proper synthesis of myelin membrane, and provide insight into abnormal Schwann cell function under conditions affecting lipid metabolism.
Resumo:
Recent years have seen so-called natural killer T (NKT) cells emerge as important regulators of the immune response. The existence of NKT-cell subsets, and other types of T cell that resemble NKT cells, is an ongoing source of confusion in the literature. This perspective article seeks to clarify which cells fall under the NKT-cell umbrella, and which might be best considered as separate.
Resumo:
PURPOSE: To investigate the involvement of the cornea during endotoxin-induced uveitis (EIU) in the rat and the effect of Ngamma-nitro-L-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor, administered by iontophoresis. METHODS: EIU was induced in Lewis rats that were killed at 8 and 16 hours after lipopolysaccharide (LPS) injection. The severity of uveitis was evaluated clinically at 16 hours, and nitrite levels were evaluated in the aqueous humor at 8 hours. Corneal thickness was measured, 16 hours after LPS injection, on histologic sections using an image analyzer. Transmission electron microscopy (TEM) was used for fine analysis of the cornea. Transcorneoscleral iontophoresis of L-NAME (100 mM) was performed either at LPS injection or at 1 and 2 hours after LPS injection. RESULTS: At 16 hours after LPS injection, mean corneal thickness was 153.7+/-5.58 microm in the group of rats injected with LPS (n=8) compared with 126.89+/-11.11 microm in the saline-injected rats (n=8) (P < 0.01). TEM showed stromal edema and signs of damage in the endothelial and epithelial layers. In the group of rats treated by three successive iontophoreses of L-NAME (n=8), corneal thickness was 125.24+/-10.36 microm compared with 146.76+/-7.52 microm in the group of rats treated with iontophoresis of saline (n=8), (P=0.015). TEM observation showed a reduction of stromal edema and a normal endothelium. Nitrite levels in the aqueous humor were significantly reduced at 8 hours by L-NAME treatment (P=0.03). No effect on corneal edema was observed after a single iontophoresis of L-NAME at LPS injection (P=0.19). Iontophoresis of saline by itself induced no change in corneal thickness nor in TEM structure analysis compared with normal rats. CONCLUSIONS: Corneal edema is observed during EIU. This edema is significantly reduced by three successive iontophoreses of L-NAME, which partially inhibited the inflammation. A role of nitric oxide in the corneal endothelium functions may explain the antiedematous effect of L-NAME.
Resumo:
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE- and CGE-derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT-PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE- and CGE-derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 647-672, 2013.
Citizens' preferences for brand name drugs for treating acute and chronic conditions: a pilot study.
Resumo:
Background: Generic drugs have been advocated to decrease the proportion of healthcare costs devoted to drugs, but are still underused. Objective: To assess citizens' preferences for brand name drugs (BNDs) compared with generic drugs for treating acute and chronic conditions. Methods: A questionnaire with eight hypothetical scenarios describing four acute and four chronic conditions was developed, with willingness to pay (WTP) determined using a payment card system randomized to ascending (AO) or descending order (DO) of prices. The questionnaire was distributed with an explanation sheet, an informed consent form and a pre-stamped envelope over a period of 3 weeks in 19 community pharmacies in Lausanne, Switzerland. The questionnaire was distributed to every third customer who also had health insurance, understood French and was aged =16 years (up to a maximum of ten customers per day and 100 per pharmacy). The main outcome measure was preferences assessed by WTP for BNDs as compared with generics, and impact of participants' characteristics on WTP. Results: Of the 1800 questionnaires, 991 were distributed and 393 returned (pharmacy participation rate?=?55%, subject participation rate?=?40%, overall response rate?=?22%); 51.7% were AO and 48.3% DO. Participants were predominantly women (62.6%) and of median age 62 years (range 16-90). The majority (70%) declared no WTP for BNDs as compared with generics. WTP was higher in people with an acute disease than in those with a chronic disease, did not depend on the type of chronic disease, and was higher in people from countries other than Switzerland. Conclusions: Most citizens visiting pharmacies attribute no added value to BNDs as compared with generics, although some citizen characteristics affected WTP. These results could be of interest to several categories of decision makers within the healthcare system.
Resumo:
New karyological and morphological data show that Sicily, the Egadi Islands, Malta and Gozo are (ore were) inhabited by a particular species of Crocidura, for which the name Crocidura sicula Miller, 1901 is available. The species is briefly diagnosed and described and a new key to the European species of Crocidura is presented
Resumo:
Charcot-Marie-Tooth disease type 4C (CMT4C) is an early-onset, autosomal recessive form of demyelinating neuropathy. The clinical manifestations include progressive scoliosis, delayed age of walking, muscular atrophy, distal weakness, and reduced nerve conduction velocity. The gene mutated in CMT4C disease, SH3TC2/KIAA1985, was recently identified; however, the function of the protein it encodes remains unknown. We have generated knockout mice where the first exon of the Sh3tc2 gene is replaced with an enhanced GFP cassette. The Sh3tc2(DeltaEx1/DeltaEx1) knockout animals develop progressive peripheral neuropathy manifested by decreased motor and sensory nerve conduction velocity and hypomyelination. We show that Sh3tc2 is specifically expressed in Schwann cells and localizes to the plasma membrane and to the perinuclear endocytic recycling compartment, concordant with its possible function in myelination and/or in regions of axoglial interactions. Concomitantly, transcriptional profiling performed on the endoneurial compartment of peripheral nerves isolated from control and Sh3tc2(DeltaEx1/DeltaEx1) animals uncovered changes in transcripts encoding genes involved in myelination and cell adhesion. Finally, detailed analyses of the structures composed of compact and noncompact myelin in the peripheral nerve of Sh3tc2(DeltaEx1/DeltaEx1) animals revealed abnormal organization of the node of Ranvier, a phenotype that we confirmed in CMT4C patient nerve biopsies. The generated Sh3tc2 knockout mice thus present a reliable model of CMT4C neuropathy that was instrumental in establishing a role for Sh3tc2 in myelination and in the integrity of the node of Ranvier, a morphological phenotype that can be used as an additional CMT4C diagnostic marker.
Resumo:
Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.
Resumo:
Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.
Resumo:
Transparency is now seen as a key tool of democratic governance. The European Union's commitment to transparency is now at the centre of a crucial debate between the Commission and the Parliament on the future of citizen's right of access to information. This article presents the main characteristics of the current regime and questions the pertinence of the proposed changes in light of the international drive at modernising access to information laws and the attempt at identifying the ̳proper limits of transparency'. The questions raised range from the identification of what can be accessed to the definition of exemption and the protection of competing interests.