5 resultados para loop closure
em Université de Lausanne, Switzerland
Resumo:
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.
Resumo:
BACKGROUND/OBJECTIVES: This study aims to assess whether patent foramen ovale (PFO) closure is superior to medical therapy in preventing recurrence of cryptogenic ischemic stroke or transient ischemic attack (TIA). METHODS: We searched PubMed for randomized trials which compared PFO closure with medical therapy in cryptogenic stroke/TIA using the items: "stroke or cerebrovascular accident or TIA" and "patent foramen ovale or paradoxical embolism" and "trial or study". RESULTS: Among 650 potentially eligible articles, 3 were included including 2303 patients. There was no statistically significant difference between PFO-closure and medical therapy in ischemic stroke recurrence (1.91% vs. 2.94% respectively, OR: 0.64, 95%CI: 0.37-1.10), TIA (2.08% vs. 2.42% respectively, OR: 0.87, 95%CI: 0.50-1.51) and death (0.60% vs. 0.86% respectively, OR: 0.71, 95%CI: 0.28-1.82). In subgroup analysis, there was significant reduction of ischemic strokes in the AMPLATZER PFO Occluder arm vs. medical therapy (1.4% vs. 3.04% respectively, OR: 0.46, 95%CI: 0.21-0.98, relative-risk-reduction: 53.2%, absolute-risk-reduction: 1.6%, number-needed-to-treat: 61.8) but not in the STARFlex device (2.7% vs. 2.8% with medical therapy, OR: 0.93, 95%CI: 0.45-2.11). Compared to medical therapy, the number of patients with new-onset atrial fibrillation (AF) was similar in the AMPLATZER PFO Occluder arm (0.72% vs. 1.28% respectively, OR: 1.81, 95%CI: 0.60-5.42) but higher in the STARFlex device (0.64% vs. 5.14% respectively, OR: 8.30, 95%CI: 2.47-27.84). CONCLUSIONS: This meta-analysis does not support PFO closure for secondary prevention with unselected devices in cryptogenic stroke/TIA. In subgroup analysis, selected closure devices may be superior to medical therapy without increasing the risk of new-onset AF, however. This observation should be confirmed in further trials using inclusion criteria for patients with high likelihood of PFO-related stroke recurrence.
Resumo:
BACKGROUND: Excision and primary midline closure for pilonidal disease (PD) is a simple procedure; however, it is frequently complicated by infection and prolonged healing. The aim of this study was to analyze risk factors for surgical site infection (SSI) in this context. METHODS: All consecutive patients undergoing excision and primary closure for PD from January 2002 through October 2008 were retrospectively assessed. The end points were SSI, as defined by the Center for Disease Control, and time to healing. Univariable and multivariable risk factor analyses were performed. RESULTS: One hundred thirty-one patients were included [97 men (74%), median age = 24 (range 15-66) years]. SSI occurred in 41 (31%) patients. Median time to healing was 20 days (range 12-76) in patients without SSI and 62 days (range 20-176) in patients with SSI (P < 0.0001). In univariable and multivariable analyses, smoking [OR = 2.6 (95% CI 1.02, 6.8), P = 0.046] and lack of antibiotic prophylaxis [OR = 5.6 (95% CI 2.5, 14.3), P = 0.001] were significant predictors for SSI. Adjusted for SSI, age over 25 was a significant predictor of prolonged healing. CONCLUSION: This study suggests that the rate of SSI after excision and primary closure of PD is higher in smokers and could be reduced by antibiotic prophylaxis. SSI significantly prolongs healing time, particularly in patients over 25 years.
Resumo:
During transapical transcatheter aortic valve replacement (TA-TAVR), the apical closure remains a challenge for the surgeon, having the risk for ventricular tear and massive bleeding. Apical closure devices are already under clinical evaluation, but only a few can lead to a full percutaneous TA-TAVR. We describe the successful use of a 9-mm myocardial occluder (ventricular septal defect occluder) that was used to seal the apex after a standard TA-TAVR (using the Sapien XT 23-mm transcatheter valve and the Ascendra + delivery system). The placement of the nonmodified myocardial occluder was performed through the Ascendra + delivery system, with a very small amount of blood loss and an acceptable sealing of the apical tear. This approach is feasible and represents a further step toward true-percutaneous transapical heart valve procedures. Modified apical occluders are under evaluation in animal models.
Resumo:
The majority of transcatheter aortic valve implantations, structural heart procedures and the newly developed transcatheter mitral valve repair and replacement are traditionally performed either through a transfemoral or a transapical access site, depending on the presence of severe peripheral vascular disease or anatomic limitations. The transapical approach, which carries specific advantages related to its antegrade nature and the short distance between the introduction site and the cardiac target, is traditionally performed through a left anterolateral mini-thoracotomy and requires rib retractors, soft tissue retractors and reinforced apical sutures to secure, at first, the left ventricular apex for the introduction of the stent-valve delivery systems and then to seal the access site at the end of the procedure. However, despite the advent of low-profile apical sheaths and newly designed delivery systems, the apical approach represents a challenge for the surgeon, as it has the risk of apical tear, life-threatening apical bleeding, myocardial damage, coronary damage and infections. Last but not least, the use of large-calibre stent-valve delivery systems and devices through standard mini-thoracotomies compromises any attempt to perform transapical transcatheter structural heart procedures entirely percutaneously, as happens with the transfemoral access site, or via a thoracoscopic or a miniaturised video-assisted percutaneous technique. During the past few years, prototypes of apical access and closure devices for transapical heart valve procedures have been developed and tested to make this standardised successful procedure easier. Some of them represent an important step towards the development of truly percutaneous transcatheter transapical heart valve procedures in the clinical setting.