14 resultados para flexural buckling
em Université de Lausanne, Switzerland
Resumo:
Treatment of retinal detachment frequently uses biocompatible materials to obtain scleral buckling. These materials are not devoid of consequences on surrounding tissues. In 3 eyes enucleated for failure of surgical treatment using scleral buckling materials, the changes prompted by episcleral implants could be observed. The sclera underwent both an inversion of its curvature and a reduction of its thickness under the material, as well as an encapsulation of the material was observed. While a silicone sponge was used in part to encircle one of these eyes, its capsular inner surface was regular and smooth. In contrast, hydrogel implants used in the three eyes showed a peripheral fragmentation prompting in two of them a typical foreign body giant cell granulomatous reaction. Changes in scleral curvature and scleral thinning were observed reflecting the consequences of the buckling procedure. The capsule formation occurred as it does for any nonabsorbable matérial implanted in tissues. Degradation and fragmentation of the hydrogel material suscitated a granuloma in response to fragments. These hydrogel specific changes should be recognized on microscopic examination of slides of either capsule or eyes previously in contact with this implanted material. They attested of the instability of hydrogel after implantation.
Resumo:
Stratigraphic and petrographic analysis of the Cretaceous to Eocene Tibetan sedimentary succession has allowed us to reinterpret in detail the sequence of events which led to closure of Neotethys and continental collision in the NW Himalaya. During the Early Cretaceous, the Indian passive margin recorded basaltic magmatic activity. Albian volcanic arenites, probably related to a major extensional tectonic event, are unconformably overlain by an Upper Cretaceous to Paleocene carbonate sequence, with a major quartzarenite episode triggered by the global eustatic sea-level fall at the Cretaceous/Tertiary boundary. At the same time, Neotethyan oceanic crust was being subducted beneath Asia, as testified by calc-alkalic volcanism and forearc basin sedimentation in the Transhimalayan belt. Onset of collision and obduction of the Asian accretionary wedge onto the Indian continental rise was recorded by shoaling of the outer shelf at the Paleocene/Eocene boundary, related to flexural uplift of the passive margin. A few My later, foreland basin volcanic arenites derived from the uplifted Asian subduction complex onlapped onto the Indian continental terrace. All along the Himalaya, marine facies were rapidly replaced by continental redbeds in collisional basins on both sides of the ophiolitic suture. Next, foreland basin sedimentation was interrupted by fold-thrust deformation and final ophiolite emplacement. The observed sequence of events compares favourably with theoretical models of rifted margin to overthrust belt transition and shows that initial phases of continental collision and obduction were completed within 10 to 15 My, with formation of a proto-Himalayan chain by the end of the middle Eocene.
Resumo:
PURPOSE: Retinal detachment (RD) is a major complication of cataract surgery, which can be treated by either primary vitrectomy without indentation or the scleral buckling procedure. The aim of this study is to compare the results of these two techniques for the treatment of pseudophakic RD. PATIENTS AND METHODS: The charts of 40 patients (40 eyes) treated with scleral buckling for a primary pseudophakic RD were retrospectively studied and compared to the charts of 32 patients (32 eyes) treated with primary vitrectomy without scleral buckle during the same period by the same surgeons. To obtain comparable samples, patients with giant retinal tears, vitreous hemorrhage, and severe preoperative proliferative vitreoretinopathy (PVR) were not included. Minimal follow-up was 6 months. RESULTS: The primary success rate was 84% in the vitrectomy group and 82.5% in the ab-externo group. Final anatomical success was observed in 100% of cases in the vitrectomy group and in 95% of cases in the ab-externo group. Final visual acuity was 0.5 or better in 44% of cases in the vitrectomy group and 37.5% in the ab-externo group. The duration of the surgery was significantly lower in the ab-externo group, whereas the hospital stay tended to be lower in the vitrectomy group. In the vitrectomy group, postoperative PVR developed in 3 eyes and new or undetected breaks were responsible for failure of the initial procedure in 2 eyes. CONCLUSION: Primary vitrectomy appears to be as effective as scleral buckling procedures for the treatment of pseudophakic RD.
Resumo:
his paper proposes a structural investigation of the Turtle Mountain anticline (Alberta, Canada) to better understand the role of the different tectonic features on the development of both local and large scale rock slope instabilities occurring in Turtle Mountain. The study area is investigated by combining remote methods with detailed field surveys. In particular, the benefit of Terrestrial Laser Scanning for ductile and brittle tectonic structure interpretations is illustrated. The proposed tectonic interpretation allows the characterization of the fracturing pattern, the fold geometry and the role of these tectonic features in rock slope instability development. Ten discontinuity sets are identified in the study area, their local variations permitting the differentiation of the study zone into 20 homogenous structural domains. The anticline is described as an eastern verging fold that displays considerable geometry differences along its axis and developed by both flexural slip and tangential longitudinal strain folding mechanisms. Moreover, the origins of the discontinuity sets are determined according to the tectonic phases affecting the region (pre-folding, folding, post-folding). The localization and interpretation of kinematics of the different instabilities revealed the importance of considering the discrete brittle planes of weakness, which largely control the kinematic release of the local instabilities, and also the rock mass damage induced by large tectonic structures (fold hinge, thrust).
Resumo:
Rifting processes, leading to sea-floor spreading, are characterized by a sequence of events: transtensive phase of extension with syn-rift volcanism; simple shear extension accompanied by lithospheric thinning and asthenospheric up-welling and thermal uplift of the rift shoulder and asymmetric volcanism. The simple shear model of extension leads to an asymmetric model of passive margin: a lower plate tilted block margin and an upper plate flexural, ramp-like margin- Both will be affected by thermal contraction and subsidence, starting soon after sea-floor spreading. Based on these actualistic models Tethyan margins are classified as one type or the other. Their evolution from the first transtensional phase of extension to the passive margin stage are analyzed. Four main rifting events are recognized in the Tethyan realm: an episode of lower Paleozoic events leading to the formation of the Paleotethys; a Late Paleozoic event leading to the opening of the Permotethys and East Mediterranean basin: an early Mesozoic event leading to the opening of the Pindos Neotethys and a Jurassic event related to the opening of the Alpine/Atlantic Neotethys. Type margins are given as example of each rifting event: -Northern Iran (Alborz) as a type area for the Late Ordovician to Silurian rifting of Paleotethys. -Northern India and Oman for the Late Carboniferous to early Permian rifting of Permotethys. -The East Mediterranean (Levant, Tunisia) as a Late Carboniferous rifting event. -The Neotethyan rifting phases are separated in two types: an eastern Pindos system found in Turkey and Greece is genetically linked to the Permotethys with a sea-floor spreading delayed until middle Triassic: a western Alpine system directly linked to the opening of the central Atlantic is characterized by a Late Triassic transtensive phase, an early to Middle Liassic break-away phase and. following sea-floor spreading, a thermal subsidence phase starting in Dogger. Problems related to the closure of the Paleozoic oceanic domains are reviewed. A Late Permian, early Triassic phase of `'docking'' between an European accretionary prism (Chios) and a Paleotethyan margin is supported by recent findings in the Mediterranean area. Back-arc rifting within the European active margin led to the formation of marginal seas during Permian and Triassic times and will contribute to the closure of the Paleozoic oceans.
Resumo:
The detailed geological mapping and structural study of a complete transect across the northwestern Himalaya allow to describe the tectonic evolution of the north Indian continental margin during the Tethys ocean opening and the Himalayan Orogeny. The Late Paleozoic Tethys rifting is associated with several tectonomagmatic events. In Upper Lahul and SE Zanskar, this extensional phase is recorded by Lower Carboniferous synsedimentary transtensional faults, a Lower Permian stratigraphic unconformity, a Lower Permian granitic intrusion and middle Permian basaltic extrusions (Panjal Traps). In eastern Ladakh, a Permian listric normal fault is also related to this phase. The scarcity of synsedimentary faults and the gradual increase of the Permian syn-rift sediment thickness towards the NE suggest a flexural type margin. The collision of India and Asia is characterized by a succession of contrasting orogenic phases. South of the Suture Zone, the initiation of the SW vergent Nyimaling-Tsarap Nappe corresponds to an early phase of continental underthrusting. To the S, in Lahul, an opposite underthrusting within the Indian plate is recorded by the NE vergent Tandi Syncline. This structure is associated with the newly defined Shikar Beh Nappe, now partly eroded, which is responsible for the high grade (amphibolite facies) regional metamorphism of South Lahul. The main thrusting of the Nyimaling-Tsarap Nappe followed the formation of the Shikar Beh Nappe. The Nyimaling-Tsarap Nappe developed by ductile shear of the upper part of the subducted Indian continental margin and is responsible for the progressive regional metamorphism of SE Zanskar, reaching amphibolite facies below the frontal part of the nappe, near Sarchu. In Upper Lahul, the frontal parts of the Nyimaling-Tsarap and Shikar Beh nappes are separated by a zone of low grade metamorphic rocks (pumpellyite-actinolite facies to lower greenschist facies). At high structural level, the Nyimaling-Tsarap Nappe is characterized by imbricate structures, which grade into a large ductile shear zone with depth. The related crustal shortening is about 87 km. The root zone and the frontal part of this nappe have been subsequently affected by two zones of dextral transpression and underthrusting: the Nyimaling Shear Zone and the Sarchu Shear Zone. These shear zones are interpreted as consequences of the counterclockwise rotation of the continental underthrusting direction of India relative to Asia, which occurred some 45 and 36 Ma ago, according to plate tectonic models. Later, a phase of NE vergent `'backfolding'' developed on these two zones of dextral transpression, creating isoclinal folds in SE Zanskar and more open folds in the Nyimaling Dome and in the Indus Molasse sediments. During a late stage of the Himalayan Orogeny, the frontal part of the Nyimaling-Tsarap Nappe underwent an extension of about 15 km. This phase is represented by two types of structures, responsible for the tectonic unroofing of the amphibolite facies rocks of the Sarchu area: the Sarchu high angle Normal Fault, cutting a first set of low angle normal faults, which have been created by reactivation of older thrust planes related to the Nyimaling-Tsarap Nappe.
Resumo:
Résumé Le « terrane » d'Anarak-Jandak occupe une position géologique clé au nord-ouest du Microcontinent Centre-East Iranien (CE1M), connecté avec le Bloc du Grand Kavir et la ceinture métamorphique de Sanandaj-Sirjan. Nous discutons ici l'origine de ces différentes unités, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, pour conclure finalement de leur affinité paléotéthysienne. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur-Dévonien inférieur, pour se terminer au Trias par la collision des blocs Cimmériens dérivé du Gondwana avec le Bloc du Turan d'affinité asiatique (événement Eocimmérien). La plus importante unité métamorphique affleurant au sud-ouest de la région de Jandak-Anarak-Kaboudan est une épaisse séquence silicoclastique à grains fins contenant des blocs ophiolitiques (marginal-sea-type), et des associations basalte-gabbro à signatures géochimiques de type supra-subduction. Dans la région de Nakhlak, nous avons daté ces gabbros par la méthode U-Pb à 387f0.11 Ma ; les roches métamorphiques pélitiques ont donné des âges de refroidissement Ar-Ar pour la muscovite de 320 à 333 Ma. Ce complexe d'accrétion "varisque" a été métamorphisé dans le faciès schiste vert-amphibolite au cours de l'accrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma par la méthode U/Pb), qui affleure aujourd'hui à l'extrémité nord-ouest du terrane d'Anarak-Jandak . La subduction vers le nord de l'océan Paléotéthys depuis le Paléazoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de guyots (Anarak, Kaboudan, et Meraji Seamounts) et de hauts sous-marins, entrés en collision oblique avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries {âges Ar-Ar de 280 à 230 Ma). De plus, le magmatisme bimodal de Chah Gorbeh est caractérisé d'une part par des roches de type trondjémite-gabbros (262 Ma), d'autre part par des laves en coussin de type basaltes alcalins-rhyolites; ces roches magmatiques ont recoupé l'ophiolite d'Anarak lors de la mise en place de cette dernière dans la fosse interne de subduction. Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, i1 a été accrété le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge probable Triasique. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé dans les dépôts infra-arc Dévonien supérieur-Carbonifère de Godar-e-Siah, ainsi que dans la succession d'avant-arc de Nakhlak. Pendant l'intervalle Paléozoïque supérieur-Trias, la région de Jandak a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, elle-même comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites d'arc à collisionnel datés à 215±15 Ma. Dans la région de Yazd, témoin de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur; il en a été de même pour les dépôts de plate-forme Paléozoïque supérieur. L'érosion, qui dans ce dernier cas a atteint le Permien, pourrait être liée au bombement flexural de la marge passive. La collision finale n'a pas induit de déformations trop importantes, et se caractérise par la mise en place de nappes sur la marge passive. Cet événement est scellé par des dépôts molassique du Lias. D'un point de vue régional, la zone s'étendant actuellement de la Mer Noire au Pamir a été soumise à six épisodes d'extension-compression du Jurassique inférieur (début du l'ouverture en position arrière-arc de la Néotéthys) à l'Eocène moyen. Par exemple, le terrane d'AnarakJandak, probablement situé entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de sa patrie d'origine au début du Crétacé supérieur. Des preuves de cet événement se retrouvent dans les séries de plate-forme de Khur (préservation de séries syn-rift puis de marge passive). Les ophiolites de Nain et de Sabzevar sont de plus interprétée comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation par la plaque indienne de l'Eurasie a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent Iranien et de la formation du CEIM. Cette rotation est responsable du transport du terrane d'Anarak-Jandak vers sa position actuelle en Iran Central, et de la dislocation de Terranes de moindre importance, comme le bloc de Posht-e Badam. Depuis le Miocène supérieur, et à la suite de la collision entre l'Arabie et l'Iran, le ternane d'Anarak-Jandak a subi des déformations liées à l'activité d'une zone de cisaillement dextre parallèle à la suture du Zagros, à l'arrière de l'arc magmatique d'Uromieh-Dokhtar. Résumé large public Le Microcontinent Centre-Est Iranien occupe une position géologique clé au centre de l'Iran. Les différentes unités qui le composent, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, sont maintenant rajeunies et liés à la fermeture de l'océean Paléotéthys. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur à Dévonien inférieur, pour se terminer au Trias par la collision des- blocs Cimmériens, dérivés du Gondwana, avec le Bloc du Turan d'affinité asiatique. Dans la marge active asiatique de la Paléotéthys, nous avons daté les restes d'un océan marginal à 387±0.11 Ma. Ce complexe d'accrétion a été métamorphisé au cours de la réaccrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma), qui affleure aujourd'hui à l'extrémité nord-ouest du « terrane » d'Anarak-Jandak correspondant à la plus grande partie de la région étudiée. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé et daté du Dévonien supérieur-Carbonifère. Pendant l'intervalle Paléozoïque supérieur-Trias, la région a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites datés à 215±15 Ma. La subduction vers le nord de l'océan Paléotéthys depuis le Paléozoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de volcans sous-marins, entrés en collision avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries (280 à 230 Ma). Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, il a été mis en place le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge Triasique. Dans la région de Yazd, on trouve les témoins de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur, marqué par la flexuration de la marge passive lorsqu'elle rentra en collision avec la marge active asiatique. Cet événement est scellé par des dépôts molassique à charbon du Lias. Le «terrane» d'Anarak-Jandak, probablement situé à l'origine entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de cette région au début du Crétacé supérieur lors de l'ouverture d'un bassin d'arrière-arc, engendré, cette fois, par la subduction de l'océan Néotéthys situé au sud des blocs cimmériens. Des preuves de cet événement se retrouvent dans les séries syn-rift, puis de marge passive de Khour. Les ophiolites de Nain et de Sabzevar sont interprétées comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation de l'Eurasie par la plaque indienne a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent centre-Iranien. Cette rotation de près de 90° est responsable du transport du « terrane » d'Anarak-Jandak vers sa position actuelle. Abstract The Anarak-Jandaq terrane occupies a strategic geological situation at the north-western part of the Central-East Iranian Microcontinent (CEIM) and in connection with the Great Kavir Block and Sanandaj-Sirjan metamorphic belt. Our recent findings redefine the origin of these mentioned areas so far attributed to the Precambrian-Early Palaeozoic orogenic episodes, to be now directly related to the tectonic evolution of the Palaeo-Tethys Ocean, commenced by Late Ordovician-Early Devonian rifting events and terminated in the Triassic by the Eocimmerian tectonic event due to the collision of the Cimmerian blocks with the Asiatic Turan block. The most distributed metamorphic unit that is exposed from the south-west of Jandaq to the Anarak and Kaboudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea-basin ophiolitic blocks including basalt-gabbro association with supra-subduction-geochemical signature. These gabbros in the Nakhlak area were dated by U/Pb method at 387.6 ± 0.11 Ma and the metamorphic pelitic rocks yielded a range of 320 to 333 Ma muscovite-cooling ages based on 40Ar/39 Ar method. This "Variscan" accretionary complex was metamorphosed in greenschist-amphibolite facies during accretion to the Lower Cambrian Airekan granitic belt (549 ± 15 Ma by U/Pb method) that crops out at the northwestern edge of the Anarak-Jandaq terrane. Continued northward subduction of the Palaeo-Tethys Ocean during the entire Late Palaeozoic-Middle Triassic brought huge amount of oceanic material to the subduction zone. One chain of Carboniferous-Triassic oceanic rises and seamounts (the Anarak, Kaboudan, and Meraji Seamounts) obliquely collided with the accretionary wedge and created a mild HP metamorphic event (280-230 Ma based on 40Ar/39Ar results). Bimodal magmatism of the Chah Gorbeh area is characterized by a 262 Ma trondjemite-gabbro as well as pillow alkalibasalts-rhyolites which intruded the Anarak ophiolite when it was being emplaced within the inner-wall trench. The mainly Late Permian-Triassic Doshakh wedge was accreted along the continent and metamorphosed under lower greenschist facies and the probable Triassic Bayazeh flysch filled the foreland basin during the final closure. The Palaeo-Tethys magmatic arc products have been well preserved in the Late Devonian-Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. During the Late Palaeozoic-Triassic times, the Jandaq area has been affected by back-arc extension and probably the Arusan ophiolitic belt is the remnant of this narrow basin comparable to the Aqdarband ophiolitic remnant in north-east Iran. This metamorphic belt was intruded by 215 ± 15 Ma arc to collisional granites. In the passive margin of the Cimmerian block, on the Yazd region, the Silurian-Early Devonian syn-rift succession as well as the nearly continuous Upper Palaeozoic platform-type deposition was interrupted during the Middle to Late Triassic time, local erosion down to Devonian levels may be related to flexural bulge erosion. The collision event was not so strong to generate intensive deformation but was accompanied by some nappe thrusting onto the passive margin. It is finally unconformably covered by Liassic continental molassic deposits. Related to the onset of Neo-Tethyan back-arc opening in Early Jurassic to Mid-Eocene times, six periods of extensional-compressional events have differently influenced an elongated area, extending from the West Black Sea to Pamir. The Anarak-Jandaq terrane which was situated somewhere in this affected area, probably between the Kopeh Dagh and North Afghan platform, was completely detached from its source at the beginning of the Late Cretaceous
Resumo:
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian-Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician-Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block. The ``Variscan accretionary complex'' is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New Ar-40/Ar-39 ages are obtained as 333-320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian-Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 +/- 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by Some Ar-40/Ar-39 radiometric ages of 163-156 Ma. The ``Variscan'' accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 +/- 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280-230 Ma Ar-40/Ar-39 ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U-Pb age for the trondhjemite-rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block. The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian-Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak. One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic melanges, finally transported the Anarak-Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak-Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The Crystalline Nappe of the High Himalayan Crystalline has been examined along the Kulu Valley and its vicinity (Mandi-Khoksar transect). This nappe was believed to have undergone deformation related only to its transport towards the SW essentially during the `'Main Central Thrust event''. New data has led to the conclusion that during the Himalayan orogeny, two distinctive phases, related to two opposite transport directions, characterize the evolution of this part of the chain, before the creation of the late NE-vergent backfolding. The first phase corresponds to an early NE-vergent folding and thrusting, creating the Tandi Syncline and the NE-oriented Shikar Beh Nappe stack, with a displacement amplitude of about 50 km. Two schistosities, together with a strong stretching lineation are developed at a deep tectonic level under amphibolite facies conditions (kyanite-staurolite-garnet-two mica schists). At a higher tectonic level and in the southern part of the section (Tandy Syncline and southern Kulu Valley between Kulu and Mandi) one or two schistosities are developed in the greenschist facies grade rocks (garnet-biotite and biotite schists). These structures and the associated Barrovian type metamorphism are all related to the NE-verging Shikar Beh Nappe. The creation of the NE-verging Shikar Beh Nappe may be explained by the reactivation of a SW dipping listric normal fault of the N Indian flexural passive margin, during the early stages of the Himalayan orogeny. In the second phase, the still hot metamorphic rocks of the Shikar Beh Nappe were folded and thrust towards the SW (mainly along the MBT and the MCT with a displacement in excess of 100 km) onto the cold, low-grade metamorphic rocks of the Larji-Kulu-Rampur Window or, near Mandi, on the non-metamorphic sandstones of the Ganges Molasse (Siwaliks). Sense of shear criteria and a strong NE-SW stretching-lineation indicate that the Crystalline Nappe has been overthrusted towards the SW. Thermometry on synkinematically crystallised garnet-biotite and garnet-hornblende pairs reveals the lower amphibolite facies temperature conditions related to the Crystalline Nappe formation. From the muscovite and biotite Rb-Sr cooling ages, the Shikar Beh Nappe emplacement occurred before 32 Ma and the southwestward thrusting of the Crystalline Nappe began before 21 Ma. Our model involving two opposite directions of thrusting goes against the conventional idea of only one main SW-oriented transport direction in the High Himalayan Crystalline Nappes.
Resumo:
Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057-1062 (2010); Nowak et al. reply. Nowak et al. argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues.
Resumo:
PURPOSE: Characterization of persistent diffuse subretinal fluid using optical coherence tomography (OCT) after successful encircling buckle surgery for inferior macula-off retinal detachment in young patients. METHODS: Institutional retrospective review of six young patients (mean age 31 +/- 6 years; five female, one male) with spontaneous inferior rhegmatogenous macula-off retinal detachment. All patients were treated with encircling buckle surgery and five out of six underwent additional external drainage of subretinal fluid. Mean follow-up was 37 +/- 25 months (range 17-75 months) and included complete ophthalmic and OCT examination. RESULTS: At 6 months, 100% of patients showed persistence of subretinal fluid on OCT. Four patients had diffuse fluid accumulation, whereas two patients showed a 'bleb-like' accumulation of fluid. This fluid was present independent of whether or not patients had been treated with external fluid drainage. Subretinal fluid only started to disappear on OCT between 6 and more than 12 months after surgery. CONCLUSION: Young patients with inferior macula-off retinal detachments and a marginally liquefied vitreous may show persisting postoperative subclinical fluid under the macula for longer periods of time than described previously.
Resumo:
This review paper deals with the geology of the NW Indian Himalaya situated in the states of Jammu and Kashmir, Himachal Pradesh and Garhwal. The models and mechanisms discussed, concerning the tectonic and metamorphic history of the Himalayan range, are based on a new compilation of a geological map and cross sections, as well as on paleomagnetic, stratigraphic, petrologic, structural, metamorphic, thermobarometric and radiometric data. The protolith of the Himalayan range, the North Indian flexural passive margin of the Neo-Tethys ocean, consists of a Lower Proterozoic basement, intruded by 1.8-1.9 Ga bimodal magmatites, overlain by a horizontally stratified sequence of Upper Proterozoic to Paleocene sediments, intruded by 470-500 Ma old Ordovician mainly peraluminous s-type granites, Carboniferous tholeiitic to alkaline basalts and intruded and overlain by Permian tholeiitic continental flood basalts. No elements of the Archaen crystalline basement of the South Indian shield have been identified in the Himalayan range. Deformation of the Himalayan accretionary wedge resulted from the continental collision of India and Asia beginning some 65-55 Ma ago, after the NE-directed underthrusting of the Neo-Tethys oceanic crust below Asia and the formation of the Andean-type 103-50 (-41) Ma old Ladakh batholith to the north of the Indus Suture. Cylindrical in geometry, the Himalayan range consists, from NE to SW, from older to younger tectonic elements, of the following zones: 1) The 25 km wide Ladakh batholith and the Asian mantle wedge form the backstop of the growing Himalayan accretionary wedge. 2) The Indus Suture zone is composed of obducted slices of the oceanic crust, island arcs, like the Dras arc, overlain by Late Cretaceous fore arc basin sediments and the mainly Paleocene to Early Eocene and Miocene epi-sutural intra-continental Indus molasse. 3) The Late Paleocene to Eocene North Himalayan nappe stack, up to 40 km thick prior to erosion, consists of Upper Proterozoic to Paleocene rocks, with the eclogitic and coesite bearing Tso Morari gneiss nappe at its base. It includes a branch of the Central Himalayan detachment, the 22-18 Ma old Zanskar Shear zone that is intruded and dated by the 22 Ma Gumburanjun leucogranite; it reactivates the frontal thrusts of the SW-verging North Himalayan nappes. 4) The late Eocene-Miocene SW-directed High Himalayan or ``Crystalline'' nappe comprises Upper Proterozoic to Mesozoic sediments and Ordovician granites, identical to those of the North Himalayan nappes. The Main Central thrust at its base was created in a zone of Eocene to Early Oligocene anatexis by ductile detachment of the subducted Indian crust, below the pre-existing 25-35 km thick NE-directed Shikar Beh and SW-directed North Himalayan nappe stacks. 5) The late Miocene Lesser Himalayan thrust with the Main Boundary Thrust at its base consists of early Proterozoic to Cambrian rocks intruded by 1.8-1.9 Ga bimodal magmatites. The Subhimalaya is a thrust wedge of Himalayan fore deep basin sediments, composed of the Early Eocene marine Subathu marls and sandstones as well as the up to 8'000 m-thick Miocene to recent Ganga molasse, a coarsening upwards sequence of shales, sandstones and conglomerates. The active frontal thrust is covered by the sediments of the Indus-Ganga plains.
Resumo:
The worldwide antibiotic crisis has led to a renewed interest in phage therapy. Since time immemorial phages control bacterial populations on Earth. Potent lytic phages against bacterial pathogens can be isolated from the environment or selected from a collection in a matter of days. In addition, phages have the capacity to rapidly overcome bacterial resistances, which will inevitably emerge. To maximally exploit these advantage phages have over conventional drugs such as antibiotics, it is important that sustainable phage products are not submitted to the conventional long medicinal product development and licensing pathway. There is a need for an adapted framework, including realistic production and quality and safety requirements, that allowsa timely supplying of phage therapy products for 'personalized therapy' or for public health or medical emergencies. This paper enumerates all phage therapy product related quality and safety risks known to the authors, as well as the tests that can be performed to minimize these risks, only to the extent needed to protect the patients and to allow and advance responsible phage therapy and research.
Resumo:
Many three-dimensional (3-D) structures in rock, which formed during the deformation of the Earth's crust and lithosphere, are controlled by a difference in mechanical strength between rock units and are often the result of a geometrical instability. Such structures are, for example, folds, pinch-and-swell structures (due to necking) or cuspate-lobate structures (mullions). These struc-tures occur from the centimeter to the kilometer scale and the related deformation processes con-trol the formation of, for example, fold-and-thrust belts and extensional sedimentary basins or the deformation of the basement-cover interface. The 2-D deformation processes causing these structures are relatively well studied, however, several processes during large-strain 3-D defor-mation are still incompletely understood. One of these 3-D processes is the lateral propagation of these structures, such as fold and cusp propagation in a direction orthogonal to the shortening direction or neck propagation in direction orthogonal to the extension direction. Especially, we are interested in fold nappes which are recumbent folds with amplitudes usually exceeding 10 km and they have been presumably formed by ductile shearing. They often exhibit a constant sense of shearing and a non-linear increase of shear strain towards their overturned limb. The fold axes of the Morcles fold nappe in western Switzerland plunges to the ENE whereas the fold axes in the more eastern Doldenhorn nappe plunges to the WSW. These opposite plunge direc-tions characterize the Rawil depression (Wildstrubel depression). The Morcles nappe is mainly the result of layer parallel contraction and shearing. During the compression the massive lime-stones were more competent than the surrounding marls and shales, which led to the buckling characteristics of the Morcles nappe, especially in the north-dipping normal limb. The Dolden-horn nappe exhibits only a minor overturned fold limb. There are still no 3-D numerical studies which investigate the fundamental dynamics of the formation of the large-scale 3-D structure including the Morcles and Doldenhorn nappes and the related Rawil depression. We study the 3-D evolution of geometrical instabilities and fold nappe formation with numerical simulations based on the finite element method (FEM). Simulating geometrical instabilities caused by sharp variations of mechanical strength between rock units requires a numerical algorithm that can accurately resolve material interfaces for large differences in material properties (e.g. between limestone and shale) and for large deformations. Therefore, our FE algorithm combines a nu-merical contour-line technique and a deformable Lagrangian mesh with re-meshing. With this combined method it is possible to accurately follow the initial material contours with the FE mesh and to accurately resolve the geometrical instabilities. The algorithm can simulate 3-D de-formation for a visco-elastic rheology. The viscous rheology is described by a power-law flow law. The code is used to study the 3-D fold nappe formation, the lateral propagation of folding and also the lateral propagation of cusps due to initial half graben geometry. Thereby, the small initial geometrical perturbations for folding and necking are exactly followed by the FE mesh, whereas the initial large perturbation describing a half graben is defined by a contour line inter-secting the finite elements. Further, the 3-D algorithm is applied to 3-D viscous nacking during slab detachment. The results from various simulations are compared with 2-D resulats and a 1-D analytical solution. -- On retrouve beaucoup de structures en 3 dimensions (3-D) dans les roches qui ont pour origines une déformation de la lithosphère terrestre. Ces structures sont par exemple des plis, des boudins (pinch-and-swell) ou des mullions (cuspate-lobate) et sont présentés de l'échelle centimétrique à kilométrique. Mécaniquement, ces structures peuvent être expliquées par une différence de résistance entre les différentes unités de roches et sont généralement le fruit d'une instabilité géométrique. Ces différences mécaniques entre les unités contrôlent non seulement les types de structures rencontrées, mais également le type de déformation (thick skin, thin skin) et le style tectonique (bassin d'avant pays, chaîne d'avant pays). Les processus de la déformation en deux dimensions (2-D) formant ces structures sont relativement bien compris. Cependant, lorsque l'on ajoute la troisiéme dimension, plusieurs processus ne sont pas complètement compris lors de la déformation à large échelle. L'un de ces processus est la propagation latérale des structures, par exemple la propagation de plis ou de mullions dans la direction perpendiculaire à l'axe de com-pression, ou la propagation des zones d'amincissement des boudins perpendiculairement à la direction d'extension. Nous sommes particulièrement intéressés les nappes de plis qui sont des nappes de charriage en forme de plis couché d'une amplitude plurikilométrique et étant formées par cisaillement ductile. La plupart du temps, elles exposent un sens de cisaillement constant et une augmentation non linéaire de la déformation vers la base du flanc inverse. Un exemple connu de nappes de plis est le domaine Helvétique dans les Alpes de l'ouest. Une de ces nap-pes est la Nappe de Morcles dont l'axe de pli plonge E-NE tandis que de l'autre côté de la dépression du Rawil (ou dépression du Wildstrubel), la nappe du Doldenhorn (équivalent de la nappe de Morcles) possède un axe de pli plongeant O-SO. La forme particulière de ces nappes est due à l'alternance de couches calcaires mécaniquement résistantes et de couches mécanique-ment faibles constituées de schistes et de marnes. Ces différences mécaniques dans les couches permettent d'expliquer les plissements internes à la nappe, particulièrement dans le flanc inver-se de la nappe de Morcles. Il faut également noter que le développement du flanc inverse des nappes n'est pas le même des deux côtés de la dépression de Rawil. Ainsi la nappe de Morcles possède un important flanc inverse alors que la nappe du Doldenhorn en est presque dépour-vue. A l'heure actuelle, aucune étude numérique en 3-D n'a été menée afin de comprendre la dynamique fondamentale de la formation des nappes de Morcles et du Doldenhorn ainsi que la formation de la dépression de Rawil. Ce travail propose la première analyse de l'évolution 3-D des instabilités géométriques et de la formation des nappes de plis en utilisant des simulations numériques. Notre modèle est basé sur la méthode des éléments finis (FEM) qui permet de ré-soudre avec précision les interfaces entre deux matériaux ayant des propriétés mécaniques très différentes (par exemple entre les couches calcaires et les couches marneuses). De plus nous utilisons un maillage lagrangien déformable avec une fonction de re-meshing (production d'un nouveau maillage). Grâce à cette méthode combinée il nous est possible de suivre avec précisi-on les interfaces matérielles et de résoudre avec précision les instabilités géométriques lors de la déformation de matériaux visco-élastiques décrit par une rhéologie non linéaire (n>1). Nous uti-lisons cet algorithme afin de comprendre la formation des nappes de plis, la propagation latérale du plissement ainsi que la propagation latérale des structures de type mullions causé par une va-riation latérale de la géométrie (p.ex graben). De plus l'algorithme est utilisé pour comprendre la dynamique 3-D de l'amincissement visqueux et de la rupture de la plaque descendante en zone de subduction. Les résultats obtenus sont comparés à des modèles 2-D et à la solution analytique 1-D. -- Viele drei dimensionale (3-D) Strukturen, die in Gesteinen vorkommen und durch die Verfor-mung der Erdkruste und Litosphäre entstanden sind werden von den unterschiedlichen mechani-schen Eigenschaften der Gesteinseinheiten kontrolliert und sind häufig das Resulat von geome-trischen Istabilitäten. Zu diesen strukturen zählen zum Beispiel Falten, Pich-and-swell Struktu-ren oder sogenannte Cusbate-Lobate Strukturen (auch Mullions). Diese Strukturen kommen in verschiedenen Grössenordungen vor und können Masse von einigen Zentimeter bis zu einigen Kilometer aufweisen. Die mit der Entstehung dieser Strukturen verbundenen Prozesse kontrol-lieren die Entstehung von Gerbirgen und Sediment-Becken sowie die Verformung des Kontaktes zwischen Grundgebirge und Stedimenten. Die zwei dimensionalen (2-D) Verformungs-Prozesse die zu den genannten Strukturen führen sind bereits sehr gut untersucht. Einige Prozesse wäh-rend starker 3-D Verformung sind hingegen noch unvollständig verstanden. Einer dieser 3-D Prozesse ist die seitliche Fortpflanzung der beschriebenen Strukturen, so wie die seitliche Fort-pflanzung von Falten und Cusbate-Lobate Strukturen senkrecht zur Verkürzungsrichtung und die seitliche Fortpflanzung von Pinch-and-Swell Strukturen othogonal zur Streckungsrichtung. Insbesondere interessieren wir uns für Faltendecken, liegende Falten mit Amplituden von mehr als 10 km. Faltendecken entstehen vermutlich durch duktile Verscherung. Sie zeigen oft einen konstanten Scherungssinn und eine nicht-lineare zunahme der Scherverformung am überkipp-ten Schenkel. Die Faltenachsen der Morcles Decke in der Westschweiz fallen Richtung ONO während die Faltenachsen der östicher gelegenen Doldenhorn Decke gegen WSW einfallen. Diese entgegengesetzten Einfallrichtungen charakterisieren die Rawil Depression (Wildstrubel Depression). Die Morcles Decke ist überwiegend das Resultat von Verkürzung und Scherung parallel zu den Sedimentlagen. Während der Verkürzung verhielt sich der massive Kalkstein kompetenter als der Umliegende Mergel und Schiefer, was zur Verfaltetung Morcles Decke führ-te, vorallem in gegen Norden eifallenden überkippten Schenkel. Die Doldenhorn Decke weist dagegen einen viel kleineren überkippten Schenkel und eine stärkere Lokalisierung der Verfor-mung auf. Bis heute gibt es keine 3-D numerischen Studien, die die fundamentale Dynamik der Entstehung von grossen stark verformten 3-D Strukturen wie den Morcles und Doldenhorn Decken sowie der damit verbudenen Rawil Depression untersuchen. Wir betrachten die 3-D Ent-wicklung von geometrischen Instabilitäten sowie die Entstehung fon Faltendecken mit Hilfe von numerischen Simulationen basiert auf der Finite Elemente Methode (FEM). Die Simulation von geometrischen Instabilitäten, die aufgrund von Änderungen der Materialeigenschaften zwischen verschiedenen Gesteinseinheiten entstehen, erfortert einen numerischen Algorithmus, der in der Lage ist die Materialgrenzen mit starkem Kontrast der Materialeigenschaften (zum Beispiel zwi-schen Kalksteineinheiten und Mergel) für starke Verfomung genau aufzulösen. Um dem gerecht zu werden kombiniert unser FE Algorithmus eine numerische Contour-Linien-Technik und ein deformierbares Lagranges Netz mit Re-meshing. Mit dieser kombinierten Methode ist es mög-lich den anfänglichen Materialgrenzen mit dem FE Netz genau zu folgen und die geometrischen Instabilitäten genügend aufzulösen. Der Algorithmus ist in der Lage visko-elastische 3-D Ver-formung zu rechnen, wobei die viskose Rheologie mit Hilfe eines power-law Fliessgesetzes beschrieben wird. Mit dem numerischen Algorithmus untersuchen wir die Entstehung von 3-D Faltendecken, die seitliche Fortpflanzung der Faltung sowie der Cusbate-Lobate Strukturen die sich durch die Verkürzung eines mit Sediment gefüllten Halbgraben bilden. Dabei werden die anfänglichen geometrischen Instabilitäten der Faltung exakt mit dem FE Netz aufgelöst wäh-rend die Materialgranzen des Halbgrabens die Finiten Elemente durchschneidet. Desweiteren wird der 3-D Algorithmus auf die Einschnürung während der 3-D viskosen Plattenablösung und Subduktion angewandt. Die 3-D Resultate werden mit 2-D Ergebnissen und einer 1-D analyti-schen Lösung verglichen.