70 resultados para differential calorimetric analysis
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Finding genes that are differentially expressed between conditions is an integral part of understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of software packages have been developed especially for differential expression analysis of RNA-seq data. RESULTS: We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based on both simulated data and real RNA-seq data. CONCLUSIONS: Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger sample sizes, the methods combining a variance-stabilizing transformation with the 'limma' method for differential expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.
Resumo:
The Ru-Sn liquid-solid and some solid-solid equilibria have been completely revised by means of differential thermal analysis, X-ray powder diffraction and microprobe investigations. The existence of two intermetallic phases has been clearly established: Ru(0.4)Sn(0.6)decomposed by a peritectic reaction at 1266(+/-4)degrees C and Ru0.3Sn0.7 congruently melting at 1257(+/-2)degrees C.
Resumo:
A radiolabeled monoclonal antibody (MAb) that has been shown to react specifically in vitro and ex vivo to human colorectal carcinoma and to inhibit growth of human carcinomas grafted in nude mice was administered to 52 colorectal carcinoma patients and 15 patients with other types of cancer. Of 63 colorectal carcinoma tumor sites studied, 34 showed significant accumulation of antibody by external photoscanning and tomoscintigraphy, whereas none of the 20 sites of other cancer types gave positive results. One-third of the patients received F(ab')2 fragments of the MAb, which gave a slightly higher percentage (61%) of positive results than did intact MAbs (51%). A few patients scheduled for tumor resection were given injections simultaneously of 131I-labeled MAb and 125I-labeled normal immunoglobulin G. Antibody concentration in resected tumors was 3.6 to 6.3 times higher than the average antibody concentration in adjacent normal tissues (1.5, 3.4, and 9.4 as compared with normal mucosa, serosa, and fat, respectively), and the specificity indices, calculated by differential radioactivity analysis, ranged from 2.1 to 5.1. The results show the potential value and limitations of this particular MAb for tumor detection by immunoscintigraphy.
Overexpression of SMARCE1 is associated with CD8+ T-cell infiltration in early stage ovarian cancer.
Resumo:
T-lymphocyte infiltration in ovarian tumors has been linked to a favorable prognosis, hence, exploring the mechanism of T-cell recruitment in the tumor is warranted. We employed a differential expression analysis to identify genes over-expressed in early stage ovarian cancer samples that contained CD8 infiltrating T-lymphocytes. Among other genes, we discovered that TTF1, a regulator of ribosomal RNA gene expression, and SMARCE1, a factor associated with chromatin remodeling were overexpressed in first stage CD8+ ovarian tumors. TTF1 and SMARCE1 mRNA levels showed a strong correlation with the number of intra-tumoral CD8+ cells in ovarian tumors. Interestingly, forced overexpression of SMARCE1 in SKOV3 ovarian cancer cells resulted in secretion of IL8, MIP1b and RANTES chemokines in the supernatant and triggered chemotaxis of CD8+ lymphocytes in a cell culture assay. The potency of SMARCE1-mediated chemotaxis appeared comparable to that caused by the transfection of the CXCL9 gene, coding for a chemokine known to attract T-cells. Our analysis pinpoints TTF1 and SMARCE1 as genes potentially involved in cancer immunology. Since both TTF1 and SMARCE1 are involved in chromatin remodeling, our results imply an epigenetic regulatory mechanism for T-cell recruitment that invites deciphering.
Resumo:
LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.
Resumo:
Glycopeptide resistance, in a set of in vitro step-selected teicoplanin-resistant mutants derived from susceptible Staphylococcus aureus SA113, was associated with slower growth, thickening of the bacterial cell wall, increased N-acetylglucosamine incorporation, and decreased hemolysis. Differential transcriptome analysis showed that as resistance increased, some virulence-associated genes became downregulated. In a mouse tissue cage infection model, an inoculum of 10(4) CFU of strain SA113 rapidly produced a high-bacterial-load infection, which triggered MIP-2 release, leukocyte infiltration, and reduced leukocyte viability. In contrast, with the same inoculum of the isogenic glycopeptide-resistant derivative NM67, CFU initially decreased, resulting in the elimination of the mutant in three out of seven cages. In the four cages in which NM67 survived, it partially regained wild-type characteristics, including thinning of the cell wall, reduced N-acetylglucosamine uptake, and increased hemolysis; however, the survivors also became teicoplanin hypersusceptible. The elimination of the teicoplanin-resistant mutants and selection of teicoplanin-hypersusceptible survivors in the tissue cages indicated that glycopeptide resistance imposes a fitness burden on S. aureus and is selected against in vivo, with restoration of fitness incurring the price of resistance loss.
Resumo:
The Ruthenium-Silicon system has been completely revised using differential thermal analysis, X-ray diffraction and electron microprobe investigations. The two equiatomic compound structures (CsCl and FeSi types) have been identified as two different phases. The occurrence of Ru,Si, was not confirmed. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
RATIONALE AND OBJECTIVES: To systematically review and meta-analyze published data about the diagnostic accuracy of fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the differential diagnosis between malignant and benign pleural lesions. METHODS AND MATERIALS: A comprehensive literature search of studies published through June 2013 regarding the diagnostic performance of (18)F-FDG-PET and PET/CT in the differential diagnosis of pleural lesions was carried out. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odds ratio (DOR) of (18)F-FDG-PET or PET/CT in the differential diagnosis of pleural lesions on a per-patient-based analysis were calculated. The area under the summary receiver operating characteristic curve (AUC) was calculated to measure the accuracy of these methods. Subanalyses considering device used (PET or PET/CT) were performed. RESULTS: Sixteen studies including 745 patients were included in the systematic review. The meta-analysis of 11 selected studies provided the following results: sensitivity 95% (95% confidence interval [95%CI]: 92-97%), specificity 82% (95%CI: 76-88%), LR+ 5.3 (95%CI: 2.4-11.8), LR- 0.09 (95%CI: 0.05-0.14), DOR 74 (95%CI: 34-161). The AUC was 0.95. No significant improvement of the diagnostic accuracy considering PET/CT studies only was found. CONCLUSIONS: (18)F-FDG-PET and PET/CT demonstrated to be accurate diagnostic imaging methods in the differential diagnosis between malignant and benign pleural lesions; nevertheless, possible sources of false-negative and false-positive results should be kept in mind.
Resumo:
Of all Pacific salmonids, Chinook salmon Oncorhynchus tshawytscha display the greatest variability in return times to freshwater. The molecular mechanisms of these differential return times have not been well described. Current methods, such as long serial analysis of gene expression (LongSAGE) and microarrays, allow gene expression to be analyzed for thousands of genes simultaneously. To investigate whether differential gene expression is observed between fall- and spring-run Chinook salmon from California's Central Valley, LongSAGE libraries were constructed. Three libraries containing between 25,512 and 29,372 sequenced tags (21 base pairs/tag) were generated using messenger RNA from the brains of adult Chinook salmon returning in fall and spring and from one ocean-caught Chinook salmon. Tags were annotated to genes using complementary DNA libraries from Atlantic salmon Salmo salar and rainbow trout O. mykiss. Differentially expressed genes, as estimated by differences in the number of sequence tags, were found in all pairwise comparisons of libraries (freshwater versus saltwater = 40 genes; fall versus spring = 11 genes: and spawning versus nonspawning = 51 genes). The gene for ependymin, an extracellular glycoprotein involved in behavioral plasticity in fish, exhibited the most differential expression among the three groupings. Reverse transcription polymerase chain reaction analysis verified the differential expression of ependymin between the fall- and spring-run samples. These LongSAGE libraries, the first reported for Chinook salmon, provide a window of the transcriptional changes during Chinook salmon return migration to freshwater and spawning and increase the amount of expressed sequence data.
Resumo:
Differential protein labeling with 2-DE separation is an effective method for distinguishing differences in the protein composition of two or more protein samples. Here, we report on a sensitive infrared-based labeling procedure, adding a novel tool to the many labeling possibilities. Defined amounts of newborn and adult mouse brain proteins and tubulin were exposed to maleimide-conjugated infrared dyes DY-680 and DY-780 followed by 1- and 2-DE. The procedure allows amounts of less than 5 microg of cysteine-labeled protein mixtures to be detected (together with unlabeled proteins) in a single 2-DE step with an LOD of individual proteins in the femtogram range; however, co-migration of unlabeled proteins and subsequent general protein stains are necessary for a precise comparison. Nevertheless, the most abundant thiol-labeled proteins, such as tubulin, were identified by MS, with cysteine-containing peptides influencing the accuracy of the identification score. Unfortunately, some infrared-labeled proteins were no longer detectable by Western blots. In conclusion, differential thiol labeling with infrared dyes provides an additional tool for detection of low-abundant cysteine-containing proteins and for rapid identification of differences in the protein composition of two sets of protein samples.
Resumo:
BACKGROUND: Hypotension, a common intra-operative incident, bears an important potential for morbidity. It is most often manageable and sometimes preventable, which renders its study important. Therefore, we aimed at examining hospital variations in the occurrence of intra-operative hypotension and its predictors. As secondary endpoints, we determined to what extent hypotension relates to the risk of post-operative incidents and death. METHODS: We used the Anaesthesia Databank Switzerland, built on routinely and prospectively collected data on all anaesthesias in 21 hospitals. The three outcomes were assessed using multi-level logistic regression models. RESULTS: Among 147,573 anaesthesias, hypotension ranged from 0.6% to 5.2% in participating hospitals, and from 0.3% up to 12% in different surgical specialties. Most (73.4%) were minor single events. Age, ASA status, combined general and regional anaesthesia techniques, duration of surgery and hospitalization were significantly associated with hypotension. Although significantly associated, the emergency status of the surgery had a weaker effect. Hospitals' odds ratios for hypotension varied between 0.12 and 2.50 (P < or = 0.001), even after adjusting for patient and anaesthesia factors, and for type of surgery. At least one post-operative incident occurred in 9.7% of the procedures, including 0.03% deaths. Intra-operative hypotension was associated with a higher risk of post-operative incidents and death. CONCLUSION: Wide variations remain in the occurrence of hypotension among hospitals after adjustment for risk factors. Although differential reporting from hospitals may exist, variations in anaesthesia techniques and blood pressure maintenance may also have contributed. Intra-operative hypotension is associated with morbidities and sometimes death, and constant vigilance must thus be advocated.
Resumo:
A murine monoclonal antibody (SJL 2-4) specific for the antigen apo-cytochrome c was shown to inhibit both antigen-induced proliferation and lymphokine secretion by an apo-cytochrome c-specific BALB/c helper T cell clone. The inhibition was specific because additional apo-cytochrome c-specific T cell clones were not inhibited by the same monoclonal antibody. Time course studies of the inhibition indicated that the initial 8 hr of contact between T cell clones and antigen-presenting cells were critical for activation of the T cell clones. Inhibition of T cell functions by antigen-specific antibodies appeared to correlate with the antibody-antigen binding constant because a second monoclonal antibody (Cyt-1-59), with identical specificity but with a lower affinity constant for apo-cytochrome c, had very little inhibitory effect on the proliferation or lymphokine secretion of apo-cytochrome c-specific T cell clones.
Resumo:
Background: Plasmodium falciparum(P. falciparum) merozoite surfaceprotein 2 (MSP-2) is one of bloodstage proteins that are associated withprotection from malaria. MSP-2 consistsof a highly polymorphic centralrepeat region flanked by a dimorphicregion that defines the two allelicfamilies, 3D7 and FC27; N- and Cterminalregions are conserved domains.Long synthetic peptides (LSP)representing the two allelic familiesof MSP-2 and constant regions arerecognized by sera from donors livingin endemic areas; and specific antibodies(Abs) are associated with protectionand active in antibody dependentcellular inhibition (ADCI) in vitro.However, the fine specificity ofAb response to the two allelic familiesof MSP-2 is unknown. Methods: Peptidesrepresenting dimorphic regionof 3D7 and FC27 families and theirC-terminal (common fragment to thetwo families) termed 3D7-D (88 aa),FC27-D (48 aa) and C (40 aa) respectivelywere synthesized. Overlapping20 mer peptides covering dimorphicand constant regions of two familieswere also synthesized for epitopemapping. Human sera were obtainedfrom donors living in malaria endemicareas. SpecificDand CregionsAbs were purified from single or poolhuman sera. Sera from mice were obtainedafter immunization with thetwo families LSP mixture in three differentadjuvants: alhydrogel (Alum),Glucopyranosyl Lipid Adjuvant-Stableoil-in-water Emulsion (GLA-SE)and Virosome. For ADCI, P. falciparum(strain 3D7) parasite wasmaintained in culture at 0.5% parasitemiaand 4% hematocrit in air tightbox at love oxygen (2%) and 37 ºC.Results: We identified several epitopesfrom the dimorphic and constantregions of both families of MSP-2, inmice and humans (adults and children).In human, most recognizedepitopes were the same in differentendemic regions for each domain ofthe two families of MSP-2. In mice,the differential recognition of epitopewas depending on the strain of mouseand interestingly on the adjuvantused. GLA-SE and alum as adjuvantswere more often associated with therecognition of multiple epitopes thanvirosomes. Epitope-specific Abs recognizednative merozoites of P.falciparum and were active in ADCIto block development of parasite.Conclusion: The delineation of a limitednumber of epitopes could be exploitedto develop MSP-2 vaccinesactive on both allelic families ofMSP-2.
Resumo:
To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.
Resumo:
A panel of novel monoclonal antibodies was tested on the human entorhinal cortex for the recognition of age- and disease-related changes of neurofilament proteins (NF). Several antibodies identified phosphorylated NF-H subunit, which occurred preferentially in those aged between 60 and 80 years and were localized in degenerating neurons. Such neurons also contained neurofibrillary tangles, but neurofilament aggregates did not co-localize with tangles, nor did the quantity nor the number of NF-positive neurons correlate with the severity of Alzheimer's disease. This points to a susceptibility of NF in a subset of neurons for phosphorylation- and metabolically related morphological changes during neurodegeneration.