51 resultados para denaturing gradient gel by electrophoresis
em Université de Lausanne, Switzerland
Resumo:
There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.
Resumo:
This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.
Resumo:
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.
Resumo:
OBJECTIVE: To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. DESIGN: Prospective study. SETTING: Human reproduction research laboratory. PATIENT(S): Nine women with endometriotic lesions. INTERVENTION(S): Endometriotic lesions were obtained during laparoscopic surgery. MAIN OUTCOME MEASURE(S): The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. RESULT(S): This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. CONCLUSION(S): This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.
Resumo:
Calcium uptake by tonoplast enriched membrane vesicles from maize (Zea mays L. cv. LG 11) primary roots was studied. A pH gradient, measured by the fluorescence quenching of quinacrine, was generated across sealed vesicles driven by the pyrophosphate-dependent proton pump. The fluorescence quenching was strongly inhibited by Ca2+; moreover, when increasing Ca2+ concentrations were added to vesicles at steady-state, a concomitant decrease in the proton gradient was observed. Ca2+ uptake using Ca-45(2+) was linear from 10 min when oxalate (10 mM) was present, while Ca2+ uptake was completely inhibited with proton ionophores (FCCP and monensin), indicating a Ca2+/H+ antiport. Membranes were further fractionated using a linear sucrose density gradient (10-45%) and were identified with marker enzymes. Ca2+ uptake co-migrated with the tonoplast pyrophosphate-dependent proton pumping, pyrophosphatase and ATPase activities: the Ca2+/H+ antiport is consequently located at the tonoplast.
Resumo:
The Miocene PX1 gabbro-pyroxenite pluton, Fuerteventura, Canary Islands, is a 3.5 x 5.5 km shallow-level intrusion (0.15-0.2 GPa and 1100-1120 degrees C), interpreted as the feeder-zone to an ocean-island volcano. It displays a vertical magmatic banding expressed in five 50 to 100 metre-wide NNE-SSW trending alkaline gabbro sequences alternating with pyroxenites. This emplacement geometry was controlled by brittle to ductile shear zones, generated by a regional E-W extensional tectonic setting that affected Fuerteventura during the Miocene. At a smaller scale, the PX1 gabbro and pyroxenite bands consist of metre-thick differentiation units, which suggest emplacement by periodic injection of magma pulses as vertical dykes that amalgamated, similarly to a sub-volcanic sheeted dyke complex. Individual dykes underwent internal differentiation following a solidification front parallel to the dyke edges. This solidification front may have been favoured by a significant lateral/horizontal thermal gradient, expressed by the vertical banding in the gabbros, the fractionation asymmetry within individual dykes and the migmatisation of the wall rocks. Pyroxenitic layers result from the fractionation and accumulation of clinopyroxene +/- olivine +/- plagioclase crystals from a mildly alkaline basaltic liquid. They are interpreted as truncated differentiation sequences, from which residual melts were extracted at various stages of their chemical evolution by subsequent dyke intrusions, either next to or within the crystallising unit. Compaction and squeezing of the crystal mush is ascribed to the incoming and inflating magma pulses. The expelled interstitial liquid was likely collected and erupted along with the magma flowing through the newly injected dykes. Clinopyroxene mineral orientation - as evidenced by EBSD and micro X-ray tomography investigations - displays a marked pure-shear component, supporting the interpretation of the role of compaction in the generation of the pyroxenites. Conversely, gabbro sequences underwent minor melt extraction and are believed to represent crystallised coalesced magma batches emplaced at lower rates at the end of eruptive cycles. Clinopyroxene orientations in gabbros record a simple shear component suggesting syn-magmatic deformation parallel to observed NNE-SSW trending shear zones induced by the regional tensional stress field. This emplacement model implies a crystallisation time of 1 to 5 years for individual dykes, consistent with PX1 emplacement over less than 0.5 My. A minimum amount of approximately 150 km(3) of magma is needed to generate the pluton, part of it having been erupted through the Central Volcanic Centre of Fuerteventura. If the regional extensional tectonic regime controls the PX1 feeder-zone initiation and overall geometry, rates and volumes of magma depend on other, source-related factors. High injection rates are likely to induce intrusion growth rates larger than could be accommodated by the regional extension. In this case, dyke intrusion by propagation of a weak tip, combined with the inability of magma to circulate through previously emplaced and crystallised dykes could result in an increase of non-lithostatic pressure on previously emplaced mushy dyke walls; thus generating strong pure-shear compaction within the pluton feeder-zone and interstitial melt expulsion. These compaction-dominated processes are recorded by the cumulitic pyroxenite bands. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
How cells polarize in response to external cues is a fundamental biological problem. For mating, yeast cells orient growth toward the source of a pheromone gradient produced by cells of the opposite mating type. Polarized growth depends on the small GTPase Cdc42, a central eukaryotic polarity regulator that controls signaling, cytoskeleton polarization, and vesicle trafficking. However, the mechanisms of polarity establishment and mate selection in complex cellular environments are poorly understood. Here we show that, in fission yeast, low-level pheromone signaling promotes a novel polarization state, where active Cdc42, its GEF Scd1, and scaffold Scd2 form colocalizing dynamic zones that sample the periphery of the cell. Two direct Cdc42 effectors--actin cables marked by myosin V Myo52 and the exocyst complex labeled by Sec6 and Sec8--also dynamically colocalize with active Cdc42. However, these cells do not grow due to a block in the exocytosis of cell wall synthases Bgs1 and Bgs4. High-level pheromone stabilizes active Cdc42 zones and promotes cell wall synthase exocytosis and polarized growth. However, in the absence of prior low-level pheromone signaling, exploration fails, and cells polarize growth at cell poles by default. Consequently, these cells show altered partner choice, mating preferentially with sister rather than nonsister cells. Thus, Cdc42 exploration serves to orient growth for partner selection. This process may also promote genetic diversification.
Resumo:
For accurate and quantitative immunohistochemical localization of antigens it is crucial to know the solubility of tissue proteins and their degree of loss during processing. In this study we focused on the solubility of several cytoskeletal proteins in cat brain tissue at various ages and their loss during immunohistochemical procedures. We further examined whether fixation affected either solubility or immunocytochemical detectability of several cytoskeletal proteins. An assay was designed to measure the solubility of cytoskeletal proteins in cryostat sections. Quantity and quality of proteins lost or remaining in tissue were measured and analyzed by electrophoresis and immunoblots. Most microtubule proteins were found to be soluble in unfixed and alcohol fixed tissues. Furthermore, the microtubule proteins remaining in the tissue had a changed cellular distribution. In contrast, brain spectrin and all three neurofilament subunits were insoluble and remained in the tissue, allowing their immunocytochemical localization in alcohol-fixed tissue. Synapsin I, a protein associated with the spectrin cytoskeleton, was soluble, and aldehyde fixation is advised for its immunohistochemical localization. With aldehyde fixation, the immunoreactivity of some antibodies against neurofilament proteins was reduced in axons unveiling novel immunogenic sites in nuclei that may represent artifacts of fixation. In conclusion, protein solubility and the effects of fixation are influential factors in cytoskeletal immunohistochemistry, and should be considered before assessments for a quantitative distribution are made.
Resumo:
Background: Within the Coleoptera, the largest order in the animal kingdom, the exclusively herbivorous Chrysomelidae are recognized as one of the most species rich beetle families. The evolutionary processes that have fueled radiation into the more than thirty-five thousand currently recognized leaf beetle species remain partly unresolved. The prominent role of leaf beetles in the insect world, their omnipresence across all terrestrial biomes and their economic importance as common agricultural pest organisms make this family particularly interesting for studying the mechanisms that drive diversification. Here we specifically focus on two ecotypes of the alpine leaf beetle Oreina speciosissima (Scop.), which have been shown to exhibit morphological differences in male genitalia roughly corresponding to the subspecies Oreina speciosissima sensu stricto and Oreina speciosissima troglodytes. In general the two ecotypes segregate along an elevation gradient and by host plants: Oreina speciosissima sensu stricto colonizes high forb vegetation at low altitude and Oreina speciosissima troglodytes is found in stone run vegetation at higher elevations. Both host plants and leaf beetles have a patchy geographical distribution. Through use of gene sequencing and genome fingerprinting (AFLP) we analyzed the genetic structure and habitat use of Oreina speciosissima populations from the Swiss Alps to examine whether the two ecotypes have a genetic basis. By investigating a wide range of altitudes and focusing on the structuring effect of habitat types, we aim to provide answers regarding the factors that drive adaptive radiation in this phytophagous leaf beetle.Results: While little phylogenetic resolution was observed based on the sequencing of four DNA regions, the topology and clustering resulting from AFLP genotyping grouped specimens according to their habitat, mostly defined by plant associations. A few specimens with intermediate morphologies clustered with one of the two ecotypes or formed separate clusters consistent with habitat differences. These results were discussed in an ecological speciation framework.Conclusions: The question of whether this case of ecological differentiation occurred in sympatry or allopatry remains open. Still, the observed pattern points towards ongoing divergence between the two ecotypes which is likely driven by a recent shift in host plant use.
Resumo:
We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahia de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydrauliz gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (similar to 500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (delta(2)H(water) and delta(18)O(water), delta(34)S(sulfate) , delta(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to similar to 1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH similar to 7, Eh similar to 100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(II) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These two Fe-rich plumes were pushed toward the shoreline where more oxidizing and higher pH conditions triggered the precipitation of Fe(HI)hydroxide coatings on silicates. These coatings acted as a filter for the arsenic, which naturally infiltrated with the river water (similar to 500 mu g/L As natural background) into the tailings deposit.
Resumo:
Concentration gradients regulate many cell biological and developmental processes. In rod-shaped fission yeast cells, polar cortical gradients of the DYRK family kinase Pom1 couple cell length with mitotic commitment by inhibiting a mitotic inducer positioned at midcell. However, how Pom1 gradients are established is unknown. Here, we show that Tea4, which is normally deposited at cell tips by microtubules, is both necessary and, upon ectopic cortical localization, sufficient to recruit Pom1 to the cell cortex. Pom1 then moves laterally at the plasma membrane, which it binds through a basic region exhibiting direct lipid interaction. Pom1 autophosphorylates in this region to lower lipid affinity and promote membrane release. Tea4 triggers Pom1 plasma membrane association by promoting its dephosphorylation through the protein phosphatase 1 Dis2. We propose that local dephosphorylation induces Pom1 membrane association and nucleates a gradient shaped by the opposing actions of lateral diffusion and autophosphorylation-dependent membrane detachment.
Resumo:
RelA (NF-kappaB) is a transcription factor inducible by distinct stimuli in many different cell types. To find new cell type specific cofactors of NF-kappaB dependent transcription, we isolated RelA transcription activation domain binding proteins from the nuclear extracts of three different cell types. Analysis by electrophoresis and liquid chromatography tandem mass spectrometry identified several novel putative molecular partners. Some were strongly enriched in the complex formed from the nuclear extracts of specific cell types.
Resumo:
Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One-PEP725-has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other-NECTAR-includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.
Resumo:
Differential protein labeling with 2-DE separation is an effective method for distinguishing differences in the protein composition of two or more protein samples. Here, we report on a sensitive infrared-based labeling procedure, adding a novel tool to the many labeling possibilities. Defined amounts of newborn and adult mouse brain proteins and tubulin were exposed to maleimide-conjugated infrared dyes DY-680 and DY-780 followed by 1- and 2-DE. The procedure allows amounts of less than 5 microg of cysteine-labeled protein mixtures to be detected (together with unlabeled proteins) in a single 2-DE step with an LOD of individual proteins in the femtogram range; however, co-migration of unlabeled proteins and subsequent general protein stains are necessary for a precise comparison. Nevertheless, the most abundant thiol-labeled proteins, such as tubulin, were identified by MS, with cysteine-containing peptides influencing the accuracy of the identification score. Unfortunately, some infrared-labeled proteins were no longer detectable by Western blots. In conclusion, differential thiol labeling with infrared dyes provides an additional tool for detection of low-abundant cysteine-containing proteins and for rapid identification of differences in the protein composition of two sets of protein samples.
Resumo:
The choice of sample preparation protocol is a critical influential factor for isoelectric focusing which in turn affects the two-dimensional gel result in terms of quality and protein species distribution. The optimal protocol varies depending on the nature of the sample for analysis and the properties of the constituent protein species (hydrophobicity, tendency to form aggregates, copy number) intended for resolution. This review explains the standard sample buffer constituents and illustrates a series of protocols for processing diverse samples for two-dimensional gel electrophoresis, including hydrophobic membrane proteins. Current methods for concentrating lower abundance proteins, by removal of high abundance proteins, are also outlined. Finally, since protein staining is becoming increasingly incorporated into the sample preparation procedure, we describe the principles and applications of current (and future) pre-electrophoretic labelling methods.