52 resultados para Zinc sulfate

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We designed a double-blinded randomized clinical trial of zinc (10 or 20 mg of zinc sulphate for 2-5 month-old or 6-59 month-old children, respectively, during 10 days) vs. placebo in otherwise healthy children aged 2 months to 5 years who presented with acute diarrhoea (i.e. ≥3 stools/day for less than 72 h). Eighty-seven patients (median age 14 months; range 3.1-58.3) were analysed in an intention-to-treat approach. Forty-two patients took zinc and 45 placebo. There was no difference in the duration nor in the frequency of diarrhoea, but only 5% of the zinc group still had diarrhoea at 120 h of treatment compared to 20% in the placebo group (P = 0.05). Thirty-one patients (13 zinc and 18 placebo) were available for per-protocol analyses. The median (IQR) duration of diarrhoea in zinc-treated patients was 47.5 h (18.3-72) and differed significantly from the placebo group (median 76.3; IQR 52.8-137) (P = 0.03). The frequency of diarrhoea was also lower in the zinc group (P = 0.02). CONCLUSION: zinc treatment decreases the frequency and severity of diarrhoea in children aged 2 months to 5 years living in Switzerland. However, the intention-to-treat analysis reveals compliance issues that question the proper duration of treatment and the choice of optimal pharmaceutical formulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doxorubicin is an antineoplasic agent active against sarcoma pulmonary metastasis, but its clinical use is hampered by its myelotoxicity and its cumulative cardiotoxicity, when administered systemically. This limitation may be circumvented using the isolated lung perfusion (ILP) approach, wherein a therapeutic agent is infused locoregionally after vascular isolation of the lung. The influence of the mode of infusion (anterograde (AG): through the pulmonary artery (PA); retrograde (RG): through the pulmonary vein (PV)) on doxorubicin pharmacokinetics and lung distribution was unknown. Therefore, a simple, rapid and sensitive high-performance liquid chromatography method has been developed to quantify doxorubicin in four different biological matrices (infusion effluent, serum, tissues with low or high levels of doxorubicin). The related compound daunorubicin was used as internal standard (I.S.). Following a single-step protein precipitation of 500 microl samples with 250 microl acetone and 50 microl zinc sulfate 70% aqueous solution, the obtained supernatant was evaporated to dryness at 60 degrees C for exactly 45 min under a stream of nitrogen and the solid residue was solubilized in 200 microl of purified water. A 100 microl-volume was subjected to HPLC analysis onto a Nucleosil 100-5 microm C18 AB column equipped with a guard column (Nucleosil 100-5 microm C(6)H(5) (phenyl) end-capped) using a gradient elution of acetonitrile and 1-heptanesulfonic acid 0.2% pH 4: 15/85 at 0 min-->50/50 at 20 min-->100/0 at 22 min-->15/85 at 24 min-->15/85 at 26 min, delivered at 1 ml/min. The analytes were detected by fluorescence detection with excitation and emission wavelength set at 480 and 550 nm, respectively. The calibration curves were linear over the range of 2-1000 ng/ml for effluent and plasma matrices, and 0.1 microg/g-750 microg/g for tissues matrices. The method is precise with inter-day and intra-day relative standard deviation within 0.5 and 6.7% and accurate with inter-day and intra-day deviations between -5.4 and +7.7%. The in vitro stability in all matrices and in processed samples has been studied at -80 degrees C for 1 month, and at 4 degrees C for 48 h, respectively. During initial studies, heparin used as anticoagulant was found to profoundly influence the measurements of doxorubicin in effluents collected from animals under ILP. Moreover, the strong matrix effect observed with tissues samples indicate that it is mandatory to prepare doxorubicin calibration standard samples in biological matrices which would reflect at best the composition of samples to be analyzed. This method was successfully applied in animal studies for the analysis of effluent, serum and tissue samples collected from pigs and rats undergoing ILP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mississippi Tialley-type zinc-lead deposits and ore occurrences in the San Vicente belt are hosted in dolostones of the eastern Upper Triassic to Lower Jurassic Pucara basin, central Peru. Combined inorganic and organic geochemical data from 22 sites, including the main San Vicente deposit, minor ore occurrences, and barren localities, provide better understanding of fluid pathways and composition, ore precipitation mechanisms, Eh-pH changes during mineralization, and relationships between organic matter and ore formation. Ore-stage dark replacement dolomite and white sparry dolomite are Fe and rare earth element (REE) depleted, and Mn enriched, compared to the host dolomite. In the main deposit, they display significant negative Ce and probably Eu anomalies. Mixing of an incoming hot, slightly oxidizing, acidic brine (H2CO3 being the dominant dissolved carbon species), probably poor in REE and Fe, with local intraformational, alkaline, reducing waters explains the overall carbon and oxygen isotope variation and the distributions of REE and other trace elements in the different hydrothermal carbonate generations. The incoming ore fluid flowed through major aquifers, probably basal basin detrital units, with limited interaction with the carbonate host rocks. The hydrothermal carbonates show a strong regional chemical homogeneity, indicating access of the ore fluids by interconnected channelways near the ore occurrences. Negative Ce anomalies in the main deposit, that are absent at the district scale, indicate local ore-fluid chemical differences. Oxidation of both migrated and indigenous hydrocarbons by the incoming fluid provided the local reducing conditions necessary for sulfate reduction to H2S, pyrobitumen precipitation, and reduction of Eu3+ to Eu2+. Fe-Mn covariations, combined with the REE contents of the hydrothermal carbonates, are consistent with the mineralizing system shifting from reducing/rock-dominated to oxidizing/fluid-dominated conditions following ore deposition. Sulfate and sulfide sulfur isotopes support sulfide origin from evaporite-derived sulfate by thermochemical organic reduction; further evidence includes the presence of C-13-depleted calcite cements (similar to-12 parts per thousand delta(13)C) as sulfate pseudomorphs, elemental sulfur, altered organic matter in the host dolomite, and isotopically heavier, late, solid bitumen. Significant alteration of the indigenous and extrinsic hydrocarbons, with absent bacterial membrane biomarkers (hopanes) is observed. The light delta(34)S of sulfides from small mines and occurrences compared to the main deposit reflect a local contribution of isotopically light sulfur, evidence of local differences in the ore-fluid chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mississippi Valley-type zinc and lead deposits at Topla (250,150 metric tons (t) of ore grading 1.0 wt % Zn and 3.3 wt % Pb) and Mezica (19 million metric tons (Mt) of ore grading 5.3 wt % Pb and 2.7 wt % Zn) occur within the Middle to Upper Triassic platform carbonate rocks of the northern Karavanke/Drau Range geotectonic units of the Eastern Alps, Slovenia. The ore and host rocks of these deposits have been investigated by a combination of inorganic and organic geochemical methods to determine major, trace, and rare earth element (REE) concentrations, hydrocarbon distribution, and stable isotope ratios of carbonates, kerogen, extractable organic matter, and individual hydrocarbons. These data combined with sedimentological evidence provide insight into the paleoenvironmental conditions at the site of ore formation. The carbonate isotope composition, the REE patterns, and the distribution of hydrocarbon biomarkers (normal alkanes and steranes) suggest a marine depositional environment. At Topla, a relatively high concentration of redox sensitive trace elements (V, Mo, U) in the host dolostones and REE patterns parallel to that of the North American shale composite suggest that sediments were deposited in a reducing environment. Anoxic conditions enhanced the preservation of organic matter and resulted in relatively higher total organic carbon contents (up to 0.4 wt %). The isotopic composition of the kerogen (delta C-13(kerogon) = -29.4 to -25.0 parts per thousand, delta N-15(kerogen) = -.13.6 to 6.8 parts per thousand) suggests that marine algae and/or bacteria were the main source of organic carbon with a very minor contribution from detrital continental plants and a varying degree of alteration. Extractable organic matter from Topla ore is generally depleted in C-13 compared to the associated kerogen, which is consistent with an indigenous source of the bitumens. The mineralization correlates with delta N-15(kerogen) values around 0 per mil, C-13 depleted kerogen, C-13 enriched n-heptadecane, and relatively high concentrations of bacteria] hydrocarbon biomarkers, indicating a high cyanobacterial biomass at the site of ore formation. Abundant dissimilatory sulfate-reducing bacteria, feeding on the cyanobacterial remains, led to accumulation of biogenic H2S in the pore water of the sediments. This biogenic H2S was mainly incorporated into sedimentary organic matter and diagenetic pyrite. Higher bacterial activity at the ore site also is indicated by specific concentration ratios of hydrocarbons, which are roughly correlated with total Pb plus Zn contents. This correlation is consistent with mixing of hydrothermal metal-rich, fluids and local bacteriogenic sulfide sulfur. The new geochemical data provide supporting evidence that Topla is a low-temperature Mississippi Valley-type deposit formed in an anoxic supratidal saline to hypersaline environment. A laminated cyanobacterial mat, with abundant sulfate-reducing bacteria was the main site of sulfate reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon and oxygen isotope studies of the host and gangue carbonates of Mississippi Valley-type zinc-lead deposits in the San Vicente District hosted in the Upper Triassic to Lower Jurassic dolostones of the Pucara basin (central Peru) were used to constrain models of the ore formation. A mixing model between an incoming hot saline slightly acidic radiogenic (Pb, Sr) fluid and the native formation water explains the overall isotopic variation (delta(13)C = - 11.5 to + 2.5 parts per thousand relative to PDB and delta(18)O = + 18.0 to + 24.3 parts per thousand relative to SMOW) of the carbonate generations. The dolomites formed during the main ore stage show a narrower range (delta(13)C = - 0.1 to + 1.7 parts per thousand and delta(18)O = + 18.7 to + 23.4 parts per thousand) which is explained by exchange between the mineralizing fluids and the host carbonates combined with changes in temperature and pressure. This model of fluid-rock interaction explains the pervasive alteration of the host dolomite I and precipitation of sphalerite I. The open-space filling hydrothermal white sparry dolomite and the coexisting sphalerite II formed by prolonged fluid-host dolomite interaction and limited CO2 degassing. Late void-filling dolomite III (or calcite) and the associated sphalerite III formed as the consequence of CO2 degassing and concomitant pH increase of a slightly acidic ore fluid. Widespread brecciation is associated to CO2 outgassing. Consequently, pressure variability plays a major role in the ore precipitation during the late hydrothermal events in San Vicente. The presence of native sulfur associated with extremely carbon-light calcites replacing evaporitic sulfates (e.g., delta(13)C = - 11.5 parts per thousand), altered native organic matter and heavier hydrothermal bitumen (from - 27.0 to - 23.0 parts per thousand delta(13)C) points to thermochemical reduction of sulfate and/or thiosulfate. The delta(13)C- and delta(18)O-values of the altered host dolostone and hydrothermal carbonates, and the carbon isotope composition of the associated organic matter show a strong regional homogeneity. These results coupled with the strong mineralogical and petrographic similarities of the different MVT occurrences perhaps reflects the fact that the mineralizing processes were similar in the whole San Vicente belt, suggesting the existence of a common regional mineralizing hydrothermal system with interconnected plumbing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mississippi Valley-type (MVT) Pb-Zn ore district at Mezica is hosted by Middle to Upper Triassic platform carbonate rocks in the Northern Karavanke/Drau Range geotectonic units of the Eastern Alps, northeastern Slovenia. The mineralization at Mezica covers an area of 64 km(2) with more than 350 orebodies and numerous galena and sphalerite occurrences, which formed epigenetically, both conformable and discordant to bedding. While knowledge on the style of mineralization has grown considerably, the origin of discordant mineralization is still debated. Sulfur stable isotope analyses of 149 sulfide samples from the different types of orebodies provide new insights on the genesis of these mineralizations and their relationship. Over the whole mining district, sphalerite and galena have delta(34)S values in the range of -24.7 to -1.5% VCDT (-13.5 +/- 5.0%) and -24.7 to -1.4% (-10.7 +/- 5.9%), respectively. These values are in the range of the main MVT deposits of the Drau Range. All sulfide delta(34)S values are negative within a broad range, with delta(34)S(pyrite) < delta(34)S(sphalerite) < delta(34)S(galena) for both conformable and discordant orebodies, indicating isotopically heterogeneous H(2)S in the ore-forming fluids and precipitation of the sulfides at thermodynamic disequilibrium. This clearly supports that the main sulfide sulfur originates from bacterially mediated reduction (BSR) of Middle to Upper Triassic seawater sulfate or evaporite sulfate. Thermochemical sulfate reduction (TSR) by organic compounds contributed a minor amount of (34)S-enriched H(2)S to the ore fluid. The variations of delta(34)S values of galena and coarse-grained sphalerite at orefield scale are generally larger than the differences observed in single hand specimens. The progressively more negative delta(34)S values with time along the different sphalerite generations are consistent with mixing of different H(2)S sources, with a decreasing contribution of H(2)S from regional TSR, and an increase from a local H(2)S reservoir produced by BSR (i.e., sedimentary biogenic pyrite, organo-sulfur compounds). Galena in discordant ore (-11.9 to -1.7%; -7.0 +/- 2.7%, n=12) tends to be depleted in (34)S compared with conformable ore (-24.7 to -2.8%, -11.7 +/- 6.2%, n=39). A similar trend is observed from fine-crystalline sphalerite I to coarse open-space filling sphalerite II. Some variation of the sulfide delta(34)S values is attributed to the inherent variability of bacterial sulfate reduction, including metabolic recycling in a locally partially closed system and contribution of H(2)S from hydrolysis of biogenic pyrite and thermal cracking of organo-sulfur compounds. The results suggest that the conformable orebodies originated by mixing of hydrothermal saline metal-rich fluid with H(2)S-rich pore waters during late burial diagenesis, while the discordant orebodies formed by mobilization of the earlier conformable mineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfur (S) is an essential macronutrient for all living organisms. Plants require large amounts of sulfate for growth and development, and this serves as a major entry point of sulfate into the food web. Plants acquire S in its ionic form from the soil; they have evolved tightly controlled mechanisms for the regulation of sulfate uptake in response to its external and internal availability. In the model plant Arabidopsis thaliana, the first key step in sulfate uptake is presumed to be carried out exclusively by only two high-affinity sulfate transporters: SULTR1;1 and SULTR1;2. A better understanding of the mode of regulation for these two transporters is crucial because they constitute the first determinative step in balancing sulfate in respect to its supply and demand. Here, we review the recent progress achieved in our comprehension of (i) mechanisms that regulate these two high-affinity sulfate transporters at the transcriptional and post-transcriptional levels, and (ii) their structure-function relationship. Such progress is important to enable biotechnological and agronomic strategies aimed at enhancing sulfate uptake and improving crop yield in S-deficient soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new angiotensin-converting enzyme (ACE) inhibitor idrapril acts by binding the catalytically important zinc ion to a hydroxamic group. We investigated its pharmacodynamic and pharmacokinetic properties in 8 healthy men: Increasing doses of 1, 5, and 25 mg idrapril as well as placebo or 5 mg captopril were administered intravenously (i.v.) at 1-week intervals. Six of the subjects received 100 mg idrapril orally (p.o.) last, and two ingested oral placebo as a double-blind control. Blood pressure (BP) and heart rate (HR) remained unchanged. No serious side effects were observed. ACE inhibition in vivo was evaluated by changes in the ratio of specifically measured plasma angiotensin II (AngII) and AngI concentrations determined by high-performance liquid chromatography/radioimmunoassay (HPLC/RIA) techniques. Plasma ACE activity in vitro was estimated by radioenzymatic assay; it was suppressed by > or = 93% at 15 min after injection of 25 mg idrapril or 5 mg captopril and by 96% 2 h after idrapril intake. Mean AngII levels were decreased dose dependently at 15 min after idrapril injections. At the same time, plasma renin activity (PRA) and AngI increased according to the doses. The AngII/AngI ratio was clearly related to plasma idrapril levels (r = -0.88, n = 60). Oral idrapril inhibited ACE maximally at 1-4 h after dosing, when < 7% of initial ACE activity was observed in vitro and in vivo. Idrapril is a safe and efficient ACE inhibitor in human subjects. It is well absorbed orally. Besides having a slightly slower onset of action, idrapril has pharmacodynamic effects comparable to those of captopril.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal development is the result of a multitude of neural migrations, which require extensive cell-cell communication. These processes are modulated by extracellular matrix components, such as heparan sulfate (HS) polysaccharides. HS is molecularly complex as a result of nonrandom modifications of the sugar moieties, including sulfations in specific positions. We report here mutations in HS 6-O-sulfotransferase 1 (HS6ST1) in families with idiopathic hypogonadotropic hypogonadism (IHH). IHH manifests as incomplete or absent puberty and infertility as a result of defects in gonadotropin-releasing hormone neuron development or function. IHH-associated HS6ST1 mutations display reduced activity in vitro and in vivo, suggesting that HS6ST1 and the complex modifications of extracellular sugars are critical for normal development in humans. Genetic experiments in Caenorhabditis elegans reveal that HS cell-specifically regulates neural branching in vivo in concert with other IHH-associated genes, including kal-1, the FGF receptor, and FGF. These findings are consistent with a model in which KAL1 can act as a modulatory coligand with FGF to activate the FGF receptor in an HS-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Acute renal failure is a serious complication in critically ill patients and frequently requires renal replacement therapy, which alters trace element and vitamin metabolism. OBJECTIVE: The objective was to study trace element balances during continuous renal replacement therapy (CRRT) in intensive care patients. DESIGN: In a prospective randomized crossover trial, patients with acute renal failure received CRRT with either sodium bicarbonate (Bic) or sodium lactate (Lac) as a buffering agent over 2 consecutive 24-h periods. Copper, selenium, zinc, and thiamine were measured with highly sensitive analytic methods in plasma, replacement solutions, and effluent during 8-h periods. Balances were calculated as the difference between fluids administered and effluent losses and were compared with the recommended intakes (RI) from parenteral nutrition. RESULTS: Nineteen sessions were conducted in 11 patients aged 65 +/- 10 y. Baseline plasma concentrations of copper were normal, whereas those of selenium and zinc were below reference ranges; glutathione peroxidase was in the lower range of normal. The replacement solutions contained no detectable copper, 0.01 micromol Se/L (Bic and Lac), and 1.42 (Bic) and 0.85 (Lac) micromol Zn/L. Micronutrients were detectable in all effluents, and losses were stable in each patient; no significant differences were found between the Bic and Lac groups. The 24-h balances were negative for selenium (-0.97 micromol, or 2 times the daily RI), copper (-6.54 micromol, or 0.3 times the daily RI), and thiamine (-4.12 mg, or 1.5 times the RI) and modestly positive for zinc (20.7 micromol, or 0.2 times the RI). CONCLUSIONS: CRRT results in significant losses and negative balances of selenium, copper, and thiamine, which contribute to low plasma concentrations. Prolonged CRRT is likely to result in selenium and thiamine depletion despite supplementation at recommended amounts.