34 resultados para Wilson, James, 1760-1839.
em Université de Lausanne, Switzerland
Resumo:
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻&supl;³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
Background and aim: Wilson disease (WD) is an inherited disorder ofhepatic copper excretion leading to toxic accumulation of copper in theliver as well as the brain, cornea, and other organs. The defect is due tomutations of the copper-transporting ATPase ATP7B. Here, we describethe adult cases of hepatic WD diagnosed at the CHUV between 2005and 2010.Methods: Clinical manifestions, results of diagnostic tests, and follow-upof adult patients with hepatic WD were recorded systematically.Results: Seven new adult cases of hepatic WD were diagnosed in ourcenter between 2005 and 2010. Three were women and 4 men, with amedian a ge at d iagnosis o f 24 (range, 1 8-56) years. Three patientspresented with acute liver failure (ALF), three with persistently elevatedliver function tests, and one with a dvanced cirrhosis. None hadneurological manifestations. Only one patient, presenting with ALF, had aKayser-Fleischer corneal ring. Median ceruloplasmin levels at diagnosiswere 0.13 (range, <0.03-0.30) g/l, median 24 h urinary copper excretion6.3 (range, 0.4-62.0) μmol/24 h, and median hepatic copperconcentration 591 (range, 284-1049) μg/g. At least one mutation in theATP7B g ene was i dentified in a ll patients. Allelic frequency of t hecommon H1069Q mutation was 14%. Two patients presenting with ALFand the one with advanced cirrhosis underwent successful l ivertransplantation. One patient with ALF recovered under chelator therapy.D-penicillamine was used as first-line chelator treatment, with a switch totrientine due to adverse effects in 2 out of 4 patients u nder l ong-termtreatment.Conclusions: The clinical presentation of WD and the performance ofdiagnostic tests are variable. A high index of suspicion i n clinicallycompatible situations i s key, with a combination of tests allowing thediagnosis of WD.
Resumo:
Wilson's disease (WD), an autosomal recessive disorder of copper transport with a broad range of genotypic and phenotypic characteristics, results from mutations in the ATP7B gene. Herein we report the results of mutation analysis of the ATP7B gene in a group of 118 Wilson disease families (236 chromosomes) prevalently of Italian origin. Using DNA sequencing we identified 83 disease-causing mutations. Eleven were novel, while twenty one already described mutations were identified in new populations in this study. In particular, mutation analysis of 13 families of Romanian origin showed a high prevalence of the p.H1069Q mutation (50%). Detection of new mutations in the ATP7B gene in new populations increases our capability of molecular analysis that is essential for early diagnosis and treatment of WD.
Resumo:
Les établissements médicaux vaudois construits entre 1760 et 1940 sont des témoins privilégiés de l'émergence de l'architecture rationnelle ainsi que de phénomènes historiques et sociaux tels que la médicalisation de la société et du territoire, l'essor du tourisme médical, le transfert des modèles et des technologies. L'étude des hôpitaux, des sanatoriums, des cliniques et des établissements de bains montre comment l'invention d'une « architecture à soigner » est le fait conjoint du médecin et de l'architecte, tous deux cherchant à faire de ces établissements des faire-valoir de leur pratique ainsi que des monuments à la gloire de la santé publique ou de la philanthropie.
Resumo:
Wilson disease (WD) is an inherited disorder of hepatic copper excretion leading to toxic accumulation of copper in the liver as well as the brain, cornea, and other organs. The defect is due to mutations of the copper-transporting ATPase ATP7B. Clinical manifestations are highly variable and comprise acute liver failure, chronic hepatitis and cirrhosis as well as neurological or psychiatric symptoms. The Kayser-Fleischer corneal ring is pathognomonic but absent in about 50% of patients with hepatic manifestations alone. A high index of suspicion in clinically compatible situations is key, with a combination of laboratory tests allowing the diagnosis of WD. Treatment is based on the use of chelating agents, D-penicillamine or trientine. Liver transplantation should be considered for patients with acute liver failure or advanced cirrhosis.