6 resultados para Uric acid.
em Université de Lausanne, Switzerland
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
Although the relationship between serum uric acid (SUA) and adiposity is well established, the direction of the causality is still unclear in the presence of conflicting evidences. We used a bidirectional Mendelian randomization approach to explore the nature and direction of causality between SUA and adiposity in a population-based study of Caucasians aged 35 to 75 years. We used, as instrumental variables, rs6855911 within the SUA gene SLC2A9 in one direction, and combinations of SNPs within the adiposity genes FTO, MC4R and TMEM18 in the other direction. Adiposity markers included weight, body mass index, waist circumference and fat mass. We applied a two-stage least squares regression: a regression of SUA/adiposity markers on our instruments in the first stage and a regression of the response of interest on the fitted values from the first stage regression in the second stage. SUA explained by the SLC2A9 instrument was not associated to fat mass (regression coefficient [95% confidence interval]: 0.05 [-0.10, 0.19] for fat mass) contrasting with the ordinary least square estimate (0.37 [0.34, 0.40]). By contrast, fat mass explained by genetic variants of the FTO, MC4R and TMEM18 genes was positively and significantly associated to SUA (0.31 [0.01, 0.62]), similar to the ordinary least square estimate (0.27 [0.25, 0.29]). Results were similar for the other adiposity markers. Using a bidirectional Mendelian randomization approach in adult Caucasians, our findings suggest that elevated SUA is a consequence rather than a cause of adiposity.
Resumo:
An acute attack of gout is a paradigm of acute sterile inflammation, as opposed to pyogenic inflammation. Recent studies suggest that the triggering of IL-1beta release from leucocytes lies at the heart of a cascade of processes that involves multiple cytokines and mediators. The NLRP3 inflammasome appears to have a specific role in this regard, but the biochemical events leading to its activation are still not well understood. We review the known mechanisms that underlie the inflammatory process triggered by urate crystals and suggest areas that require further research.
Resumo:
Excess reactive oxygen species (ROS) formation can trigger various pathological conditions such as inflammation, in which xanthine oxidase (XO) is one major enzymatic source of ROS. Although XO has been reported to play essential roles in inflammatory conditions, the molecular mechanisms underlying the involvement of XO in inflammatory pathways remain unclear. Febuxostat, a selective and potent inhibitor of XO, effectively inhibits not only the generation of uric acid but also the formation of ROS. In this study, therefore, we examined the effects of febuxostat on lipopolysaccharide (LPS)-mediated inflammatory responses. Here we show that febuxostat suppresses LPS-induced MCP-1 production and mRNA expression via activating MAPK phosphatase-1 (MKP-1) which, in turn, leads to dephosphorylation and inactivation of JNK in macrophages. Moreover, these effects of febuxostat are mediated by inhibiting XO-mediated intracellular ROS production. Taken together, our data suggest that XO mediates LPS-induced phosphorylation of JNK through ROS production and MKP-1 inactivation, leading to MCP-1 production in macrophages. These studies may bring new insights into the novel role of XO in regulating inflammatory process through MAPK phosphatase, and demonstrate the potential use of XO inhibitor in modulating the inflammatory processes.
Resumo:
Increased serum levels of homocysteine and uric acid have each been associated with cardiovascular risk. We analyzed whether homocysteine and uric acid were associated with glomerular filtration rate (GFR) and albuminuria independently of each other. We also investigated the association of MTHFR polymorphisms related to homocysteine with albuminuria to get further insight into causality. This was a cross-sectional population-based study in Caucasians (n = 5913). Hyperhomocysteinemia was defined as total serum homocysteine ≥ 15 μmol/L. Albuminuria was defined as urinary albumin-to-creatinine ratio > 30 mg/g. Uric acid was associated positively with homocysteine (r = 0.246 in men and r = 0.287 in women, P < 0.001). The prevalence of albuminuria increased across increasing homocysteine categories (from 6.4% to 17.3% in subjects with normal GFR and from 3.5% to 14.5% in those with reduced GFR, P for trend < 0.005). Hyperhomocysteinemia (OR = 2.22, 95% confidence interval: 1.60-3.08, P < 0.001) and elevated serum uric acid (OR = 1.27, 1.08-1.50, per 100 μmol/L, P = 0.004) were significantly associated with albuminuria, independently of hypertension and type 2 diabetes. The 2-fold higher risk of albuminuria associated with hyperhomocysteinemia was similar to the risk associated with hypertension or diabetes. MTHFR alleles related to higher homocysteine were associated with increased risk of albuminuria. In the general adult population, elevated serum homocysteine and uric acid were associated with albuminuria independently of each other and of renal function.
Resumo:
Chronic kidney disease (CKD), impairment of kidney function, is a serious public health problem, and the assessment of genetic factors influencing kidney function has substantial clinical relevance. Here, we report a meta-analysis of genome-wide association studies for kidney function-related traits, including 71,149 east Asian individuals from 18 studies in 11 population-, hospital- or family-based cohorts, conducted as part of the Asian Genetic Epidemiology Network (AGEN). Our meta-analysis identified 17 loci newly associated with kidney function-related traits, including the concentrations of blood urea nitrogen, uric acid and serum creatinine and estimated glomerular filtration rate based on serum creatinine levels (eGFRcrea) (P < 5.0 × 10(-8)). We further examined these loci with in silico replication in individuals of European ancestry from the KidneyGen, CKDGen and GUGC consortia, including a combined total of ∼110,347 individuals. We identify pleiotropic associations among these loci with kidney function-related traits and risk of CKD. These findings provide new insights into the genetics of kidney function.