93 resultados para Two dimensional disordered alloys
em Université de Lausanne, Switzerland
Resumo:
Over the past decades, several sensitive post-electrophoretic stains have been developed for an identification of proteins in general, or for a specific detection of post-translational modifications such as phosphorylation, glycosylation or oxidation. Yet, for a visualization and quantification of protein differences, the differential two-dimensional gel electrophoresis, termed DIGE, has become the method of choice for a detection of differences in two sets of proteomes. The goal of this review is to evaluate the use of the most common non-covalent and covalent staining techniques in 2D electrophoresis gels, in order to obtain maximal information per electrophoresis gel and for an identification of potential biomarkers. We will also discuss the use of detergents during covalent labeling, the identification of oxidative modifications and review influence of detergents on finger prints analysis and MS/MS identification in relation to 2D electrophoresis.
Resumo:
The choice of sample preparation protocol is a critical influential factor for isoelectric focusing which in turn affects the two-dimensional gel result in terms of quality and protein species distribution. The optimal protocol varies depending on the nature of the sample for analysis and the properties of the constituent protein species (hydrophobicity, tendency to form aggregates, copy number) intended for resolution. This review explains the standard sample buffer constituents and illustrates a series of protocols for processing diverse samples for two-dimensional gel electrophoresis, including hydrophobic membrane proteins. Current methods for concentrating lower abundance proteins, by removal of high abundance proteins, are also outlined. Finally, since protein staining is becoming increasingly incorporated into the sample preparation procedure, we describe the principles and applications of current (and future) pre-electrophoretic labelling methods.
Resumo:
Several different sample preparation methods for two-dimensional electrophoresis (2-DE) analysis of Leishmania parasites were compared. From this work, we were able to identify a solubilization method using Nonidet P-40 as detergent, which was simple to follow, and which produced 2-DE gels of high resolution and reproducibility.
Resumo:
In this study we have demonstrated the potential of two-dimensional electrophoresis (2DE)-based technologies as tools for characterization of the Leishmania proteome (the expressed protein complement of the genome). Standardized neutral range (pH 5-7) proteome maps of Leishmania (Viannia) guyanensis and Leishmania (Viannia) panamensis promastigotes were reproducibly generated by 2DE of soluble parasite extracts, which were prepared using lysis buffer containing urea and nonidet P-40 detergent. The Coomassie blue and silver nitrate staining systems both yielded good resolution and representation of protein spots, enabling the detection of approximately 800 and 1,500 distinct proteins, respectively. Several reference protein spots common to the proteomes of all parasite species/strains studied were isolated and identified by peptide mass spectrometry (LC-ES-MS/MS), and bioinformatics approaches as members of the heat shock protein family, ribosomal protein S12, kinetoplast membrane protein 11 and a hypothetical Leishmania-specific 13 kDa protein of unknown function. Immunoblotting of Leishmania protein maps using a monoclonal antibody resulted in the specific detection of the 81.4 kDa and 77.5 kDa subunits of paraflagellar rod proteins 1 and 2, respectively. Moreover, differences in protein expression profiles between distinct parasite clones were reproducibly detected through comparative proteome analyses of paired maps using image analysis software. These data illustrate the resolving power of 2DE-based proteome analysis. The production and basic characterization of good quality Leishmania proteome maps provides an essential first step towards comparative protein expression studies aimed at identifying the molecular determinants of parasite drug resistance and virulence, as well as discovering new drug and vaccine targets.
Resumo:
An epidemic model is formulated by a reactionâeuro"diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.
Resumo:
PURPOSE: At 7 Tesla (T), conventional static field (B0 ) projection mapping techniques, e.g., FASTMAP, FASTESTMAP, lead to elevated specific absorption rates (SAR), requiring longer total acquisition times (TA). In this work, the series of adiabatic pulses needed for slab selection in FASTMAP is replaced by a single two-dimensional radiofrequency (2D-RF) pulse to minimize TA while ensuring equal shimming performance. METHODS: Spiral gradients and 2D-RF pulses were designed to excite thin slabs in the small tip angle regime. The corresponding selection profile was characterized in phantoms and in vivo. After optimization of the shimming protocol, the spectral linewidths obtained after 2D localized shimming were compared with conventional techniques and published values from (Emir et al NMR Biomed 2012;25:152-160) in six different brain regions. RESULTS: Results on healthy volunteers show no significant difference (P > 0.5) between the spectroscopic linewidths obtained with the adiabatic (TA = 4 min) and the new low-SAR and time-efficient FASTMAP sequence (TA = 42 s). The SAR can be reduced by three orders of magnitude and TA accelerated six times without impact on the shimming performances or quality of the resulting spectra. CONCLUSION: Multidimensional pulses can be used to minimize the RF energy and time spent for automated shimming using projection mapping at high field. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Differential protein labeling with 2-DE separation is an effective method for distinguishing differences in the protein composition of two or more protein samples. Here, we report on a sensitive infrared-based labeling procedure, adding a novel tool to the many labeling possibilities. Defined amounts of newborn and adult mouse brain proteins and tubulin were exposed to maleimide-conjugated infrared dyes DY-680 and DY-780 followed by 1- and 2-DE. The procedure allows amounts of less than 5 microg of cysteine-labeled protein mixtures to be detected (together with unlabeled proteins) in a single 2-DE step with an LOD of individual proteins in the femtogram range; however, co-migration of unlabeled proteins and subsequent general protein stains are necessary for a precise comparison. Nevertheless, the most abundant thiol-labeled proteins, such as tubulin, were identified by MS, with cysteine-containing peptides influencing the accuracy of the identification score. Unfortunately, some infrared-labeled proteins were no longer detectable by Western blots. In conclusion, differential thiol labeling with infrared dyes provides an additional tool for detection of low-abundant cysteine-containing proteins and for rapid identification of differences in the protein composition of two sets of protein samples.
Resumo:
The purpose of this study is to clinically validate a new two-dimensional preoperative planning software for cementless total hip arthroplasty (THA). Manual and two-dimensional computer-assisted planning were compared by an independent observer for each of the 30 patients with osteoarthritis who underwent THA. This study showed that there were no statistical differences between the results of both preoperative plans in terms of stem size and neck length (<1 size) and hip rotation center position (<5 mm). Two-dimensional computer-assisted preoperative planning provided successful results comparable to those using the manual procedure, thereby allowing the surgeon to simulate various stem designs easily.
Resumo:
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Resumo:
PURPOSE: To improve coronary magnetic resonance angiography (MRA) by combining a two-dimensional (2D) spatially selective radiofrequency (RF) pulse with a T2 -preparation module ("2D-T2 -Prep"). METHODS: An adiabatic T2 -Prep was modified so that the first and last pulses were of differing spatial selectivity. The first RF pulse was replaced by a 2D pulse, such that a pencil-beam volume is excited. The last RF pulse remains nonselective, thus restoring the T2 -prepared pencil-beam, while tipping the (formerly longitudinal) magnetization outside of the pencil-beam into the transverse plane, where it is then spoiled. Thus, only a cylinder of T2 -prepared tissue remains for imaging. Numerical simulations were followed by phantom validation and in vivo coronary MRA, where the technique was quantitatively evaluated. Reduced field-of-view (rFoV) images were similarly studied. RESULTS: In vivo, full field-of-view 2D-T2 -Prep significantly improved vessel sharpness as compared to conventional T2 -Prep, without adversely affecting signal-to-noise (SNR) or contrast-to-noise ratios (CNR). It also reduced respiratory motion artifacts. In rFoV images, the SNR, CNR, and vessel sharpness decreased, although scan time reduction was 60%. CONCLUSION: When compared with conventional T2 -Prep, the 2D-T2 -Prep improves vessel sharpness and decreases respiratory ghosting while preserving both SNR and CNR. It may also acquire rFoV images for accelerated data acquisition.
Resumo:
To determine the feasibility of data transfer, an interlaboratory comparison was conducted on colon carcinoma cell line (DLD-1) proteins resolved by two-dimensional polyacrylamide gel electrophoresis either on small (6 x 7 cm) or large (16x18 cm) gels. The gels were silver-stained and scanned by laser densitometry, and the image obtained was analyzed using Melanie software. The number of spots detected was 1337+/-161 vs. 2382+/-176 for small vs. large format gels, respectively. After gel calibration using landmarks determined using pl and Mr markers, large- and small-format gels were matched and 712+/-36 proteins were found on both types of gels. Having performed accurate gel matching it was possible to acquire additional information after accessing a 2-D PAGE reference database (http://www.expasy.ch/ cgibin/map2/def?DLD1_HUMAN). Thus, the difference in gel size is not an obstacle for data transfer. This will facilitate exchanges between laboratories or consultation concerning existing databases.
Resumo:
PURPOSE: To introduce a new k-space traversal strategy for segmented three-dimensional echo planar imaging (3D EPI) that encodes two partitions per radiofrequency excitation, effectively reducing the number excitations used to acquire a 3D EPI dataset by half. METHODS: The strategy was evaluated in the context of functional MRI applications for: image quality compared with segmented 3D EPI, temporal signal-to-noise ratio (tSNR) (the ability to detect resting state networks compared with multislice two-dimensional (2D) EPI and segmented 3D EPI, and temporal resolution (the ability to separate cardiac- and respiration-related fluctuations from the desired blood oxygen level-dependent signal of interest). RESULTS: Whole brain images with a nominal voxel size of 2 mm isotropic could be acquired with a temporal resolution under half a second using traditional parallel imaging acceleration up to 4× in the partition-encode direction and using novel data acquisition speed-up of 2× with a 32-channel coil. With 8× data acquisition speed-up in the partition-encode direction, 3D reduced excitations (RE)-EPI produced acceptable image quality without introduction of noticeable additional artifacts. Due to increased tSNR and better characterization of physiological fluctuations, the new strategy allowed detection of more resting state networks compared with multislice 2D-EPI and segmented 3D EPI. CONCLUSION: 3D RE-EPI resulted in significant increases in temporal resolution for whole brain acquisitions and in improved physiological noise characterization compared with 2D-EPI and segmented 3D EPI. Magn Reson Med 72:786-792, 2014. © 2013 Wiley Periodicals, Inc.
Resumo:
KNOTS are usually categorized in terms of topological properties that are invariant under changes in a knot's spatial configuration(1-4). Here we approach knot identification from a different angle, by considering the properties of particular geometrical forms which we define as 'ideal'. For a knot with a given topology and assembled from a tube of uniform diameter, the ideal form is the geometrical configuration having the highest ratio of volume to surface area. Practically, this is equivalent to determining the shortest piece of tube that can be closed to form the knot. Because the notion of an ideal form is independent of absolute spatial scale, the length-to-diameter ratio of a tube providing an ideal representation is constant, irrespective of the tube's actual dimensions. We report the results of computer simulations which show that these ideal representations of knots have surprisingly simple geometrical properties. In particular, there is a simple linear relationship between the length-to-diameter ratio and the crossing number-the number of intersections in a two-dimensional projection of the knot averaged over all directions. We have also found that the average shape of knotted polymeric chains in thermal equilibrium is closely related to the ideal representation of the corresponding knot type. Our observations provide a link between ideal geometrical objects and the behaviour of seemingly disordered systems, and allow the prediction of properties of knotted polymers such as their electrophoretic mobility(5).
Resumo:
Three-dimensional sequence stratigraphy is a potent exploration and development tool for the discovery of subtle stratigraphic traps. Reservoir morphology, heterogeneity and subtle stratigraphic trapping mechanisms can be better understood through systematic horizontal identification of sedimentary facies of systems tracts provided by three-dimensional attribute maps used as an important complement to the sequential analysis on the two-dimensional seismic lines and the well log data. On new prospects as well as on already-producing fields, the additional input of sequential analysis on three-dimensional data enables the identification, location and precise delimitation of new potentially productive zones. The first part of this paper presents four typical horizontal seismic facies assigned to the successive systems tracts of a third- or fourth-order sequence deposited in inner to outer neritic conditions on a elastic shelf. The construction of this synthetic representative sequence is based on the observed reproducibility of the horizontal seismic facies response to cyclic eustatic events on more than 35 sequences registered in the Gulf coast Plio-Pleistocene and Late Miocene, offshore Louisiana in the West Cameron region of the Gulf of Mexico. The second part shows how three-dimensional sequence stratigraphy can contribute in localizing and understanding sedimentary facies associated with productive zones. A case study in the early Middle Miocene Cibicides opima sands shows multiple stacked gas accumulations in the top slope fan, prograding wedge and basal transgressive systems tract of the third-order sequence between SB15.5 and SB 13.8 Ma.