280 resultados para Tumor Suppressor Protein p53 -- genetics
em Université de Lausanne, Switzerland
Resumo:
Mitogen-activated protein kinase (MAPK) cascades regulate a wide variety of cellular processes that ultimately depend on changes in gene expression. We have found a novel mechanism whereby one of the key MAP3 kinases, Mekk1, regulates transcriptional activity through an interaction with p53. The tumor suppressor protein p53 down-regulates a number of genes, including the gene most frequently mutated in autosomal dominant polycystic kidney disease (PKD1). We have discovered that Mekk1 translocates to the nucleus and acts as a co-repressor with p53 to down-regulate PKD1 transcriptional activity. This repression does not require Mekk1 kinase activity, excluding the need for an Mekk1 phosphorylation cascade. However, this PKD1 repression can also be induced by the stress-pathway stimuli, including TNFα, suggesting that Mekk1 activation induces both JNK-dependent and JNK-independent pathways that target the PKD1 gene. An Mekk1-p53 interaction at the PKD1 promoter suggests a new mechanism by which abnormally elevated stress-pathway stimuli might directly down-regulate the PKD1 gene, possibly causing haploinsufficiency and cyst formation.
Resumo:
Cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy
Resumo:
Cyclooxyganase-2 (COX-2), a rate-limiting enzyme in the prostaglandin synthesis pathway, is overexpressed in many cancers and contributes to cancer progression through tumor cell-autonomous and paracrine effects. Regular use of non-steroidal anti-inflammatory drugs or selective COX-2 inhibitors (COXIBs) reduces the risk of cancer development and progression, in particular of the colon. The COXIB celecoxib is approved for adjunct therapy in patients with Familial adenomatous polyposis at high risk for colorectal cancer (CRC) formation. Long-term use of COXIBs, however, is associated with potentially severe cardiovascular complications, which hampers their broader use as preventive anticancer agents. In an effort to better understand the tumor-suppressive mechanisms of COXIBs, we identified MAGUK with Inverted domain structure-1 (MAGI1), a scaffolding protein implicated in the stabilization of adherens junctions, as a gene upregulated by COXIB in CRC cells and acting as tumor suppressor. Overexpression of MAGI1 in CRC cell lines SW480 and HCT116 induced an epithelial-like morphology; stabilized E-cadherin and β-catenin localization at cell-cell junctions; enhanced actin stress fiber and focal adhesion formation; increased cell adhesion to matrix proteins and suppressed Wnt signaling, anchorage-independent growth, migration and invasion in vitro. Conversely, MAGI1 silencing decreased E-cadherin and β-catenin localization at cell-cell junctions; disrupted actin stress fiber and focal adhesion formation; and enhanced Wnt signaling, anchorage-independent growth, migration and invasion in vitro. MAGI1 overexpression suppressed SW480 and HCT116 subcutaneous primary tumor growth, attenuated primary tumor growth and spontaneous lung metastasis in an orthotopic model of CRC, and decreased the number and size of metastatic nodules in an experimental model of lung metastasis. Collectively, these results identify MAG1 as a COXIB-induced inhibitor of the Wnt/β-catenin signaling pathway, with tumor-suppressive and anti-metastatic activity in experimental colon cancer.
Resumo:
Transfer of tumor antigen-specific T-cell receptors (TCRs) into human T cells aims at redirecting their cytotoxicity toward tumors. Efficacy and safety may be affected by pairing of natural and introduced TCRalpha/beta chains potentially leading to autoimmunity. We hypothesized that a novel single-chain (sc)TCR framework relying on the coexpression of the TCRalpha constant alpha (Calpha) domain would prevent undesired pairing while preserving structural and functional similarity to a fully assembled double-chain (dc)TCR/CD3 complex. We confirmed this hypothesis for a murine p53-specific scTCR. Substantial effector function was observed only in the presence of a murine Calpha domain preceded by a TCRalpha signal peptide for shuttling to the cell membrane. The generalization to a human gp100-specific TCR required the murinization of both C domains. Structural and functional T-cell avidities of an accessory disulfide-linked scTCR gp100/Calpha were higher than those of a dcTCR. Antigen-dependent phosphorylation of the proximal effector zeta-chain-associated protein kinase 70 at tyrosine 319 was not impaired, reflecting its molecular integrity in signaling. In melanoma-engrafted nonobese diabetic/severe combined immunodeficient mice, adoptive transfer of scTCR gp100/Calpha transduced T cells conferred superior delay in tumor growth among primary and long-term secondary tumor challenges. We conclude that the novel scTCR constitutes a reliable means to immunotherapeutically target hematologic malignancies.
Resumo:
BACKGROUND: Recombinant tumor necrosis factor-alpha (TNF-alpha) combined to melphalan is clinically administered through isolated limb perfusion (ILP) for regionally advanced soft tissue sarcomas of the limbs. In preclinical studies, wild-type p53 gene is involved in the regulation of cytotoxic action of TNF-alpha and loss of p53 function contributes to the resistance of tumour cells to TNF-alpha. The relationship between p53 status and response to TNF-alpha and melphalan in patients undergoing ILP is unknown. PATIENTS AND METHODS: We studied 110 cases of unresectable limbs sarcomas treated by ILP. Immunohistochemistry was carried out using DO7mAb, which reacts with an antigenic determinant from the N-terminal region of both the wild-type and mutant forms of the p53 protein, and PAb1620mAb, which reacts with the 1620 epitope characteristic of the wild-type native conformation of the p53 protein. The immunohistochemistry data were then correlated with various clinical parameters. RESULTS: P53DO7 was found expressed at high levels in 28 patients, whereas PAb1620 was negative in 20. The tumours with poor histological response to ILP with TNF-alpha and melphalan showed significantly higher levels of p53-mutated protein. CONCLUSIONS: Our results might be a clue to a role of p53 protein status in TNF-alpha and melphalan response in clinical use.
Resumo:
Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.
Resumo:
Efficient immune attack of malignant disease requires the concerted action of both CD8+ CTL and CD4+ Th cells. We used human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic mice, in which the mouse CD8 molecule cannot efficiently interact with the alpha3 domain of A2.1, to generate a high-affinity, CD8-independent T cell receptor (TCR) specific for a commonly expressed, tumor-associated cytotoxic T lymphocyte (CTL) epitope derived from the human p53 tumor suppressor protein. Retroviral expression of this CD8-independent, p53-specific TCR into human T cells imparted the CD8+ T lymphocytes with broad tumor-specific CTL activity and turned CD4+ T cells into potent tumor-reactive, p53A2.1-specific Th cells. Both T cell subsets were cooperative and interacted synergistically with dendritic cell intermediates and tumor targets. The intentional redirection of both CD4+ Th cells and CD8+ CTL by the same high-affinity, CD8-independent, tumor-specific TCR could provide the basis for novel broad-spectrum cancer immunotherapeutics.
Resumo:
Stromal fibroblast senescence has been linked to ageing-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAFs) are frequently increased. Loss or downmodulation of the Notch effector CSL (also known as RBP-Jκ) in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumours. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as a direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is downmodulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas, whereas p53 expression and function are downmodulated only in the latter, with paracrine FGF signalling as the probable culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation-stromal co-evolution model under convergent CSL-p53 control.
Resumo:
A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Caucasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53.
Resumo:
The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.
Resumo:
Hematopoietic stem cells (HSC) are probably the best understood somatic stem cells and often serve as a paradigm for other stem cells. Nevertheless, most current techniques to genetically manipulate them in vivo are either constitutive and/or induced in settings of hematopoietic stress such as after irradiation. Here, we present a conditional expression system that allows for externally controllable transgenesis and knockdown in resident HSCs, based on a lentiviral vector containing a tet-O sequence and a transgenic mouse line expressing a doxycyclin-regulated tTR-KRAB repressor protein. HSCs harvested from tTR-KRAB mice are transduced with the lentiviral vector containing a cDNA (i.e., Green Fluorescent Protein (GFP)) and/or shRNA (i.e., p53) of interest and then transplanted into lethally irradiated recipients. While the vector is effectively repressed by tTR-KRAB during homing and engraftment, robust GFP/shp53 expression is induced on doxycyclin treatment in HSCs and their progeny. Doxycylin-controllable transcription is maintained on serial transplantation, indicating that repopulating HSCs are stably modified by this approach. In summary, this easy to implement conditional system provides inducible and reversible overexpression or knock down of genes in resident HSCs in vivo using a drug devoid of toxic or activating effects.
Resumo:
Cells respond to DNA damage in a complex way and the fate of damaged cells depends on the balance between pro- and antiapoptotic signals. This is of crucial importance in cancer as genotoxic stress is implied both in oncogenesis and in classical tumor therapies. p53-induced protein with a death domain (PIDD), initially described as a p53-inducible gene, is one of the molecular switches able to activate a survival or apoptotic program. Two isoforms of PIDD, PIDD (isoform 1) and LRDD (isoform 2), have already been reported and we describe here a third isoform. These three isoforms are differentially expressed in tissues and cell lines. Genotoxic stress only affects PIDD isoform 3 mRNA levels, whereas isoforms 1 and 2 mRNA levels remain unchanged. All isoforms are capable of activating nuclear factor-kappaB in response to genotoxic stress, but only isoform 1 interacts with RIP-associated ICH-1/CED-3 homologous protein with a death domain and activates caspase-2. Isoform 2 counteracts the pro-apoptotic function of isoform 1, whereas isoform 3 enhances it. Thus, the differential splicing of PIDD mRNA leads to the formation of at least three proteins with antagonizing/agonizing functions, thereby regulating cell fate in response to DNA damage
Resumo:
Glioblastoma multiforme (GBM) is the most malignant variant of human glial tumors. A prominent feature of this tumor is the occurrence of necrosis and vascular proliferation. The regulation of glial neovascularization is still poorly understood and the characterization of factors involved in this process is of major clinical interest. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine released by leukocytes and by a variety of cells outside of the immune system. Recent work has shown that MIF may function to regulate cellular differentiation and proliferation in normal and tumor-derived cell lines, and may also contribute to the neovascularization of tumors. Our immunohistological analysis of MIF distribution in GBM tissues revealed the strong MIF protein accumulation in close association with necrotic areas and in tumor cells surrounding blood vessels. In addition, MIF expression was frequently associated with the presence of the tumor-suppressor gene p53. To substantiate the concept that MIF might be involved in the regulation of angiogenesis in GBM, we analyzed the MIF gene and protein expression under hypoxic and hypoglycemic stress conditions in vitro. Northern blot analysis showed a clear increase of MIF mRNA after hypoxia and hypoglycemia. We could also demonstrate that the increase of MIF transcripts on hypoxic stress can be explained by a profound transcriptional activation of the MIF gene. In parallel to the increase of MIF transcripts, we observed a significant rise in extracellular MIF protein on angiogenic stimulation. The data of our preliminary study suggest that the up-regulation of MIF expression during hypoxic and hypoglycemic stress might play a critical role for the neovascularization of glial tumors.
Resumo:
In contrast to other cell cycle inhibitors, the tumor suppressor p16Ink4a is not detectable or expressed at very low levels in embryonic and adult mouse tissues, and therefore it has often been considered as a specialized checkpoint protein that does not participate in the control of normal cell cycle progression. However, Ink4a-/- mice possess increased thymus size and cellularity, thus suggesting the involvement of p16(Ink4a) in the control of thymocyte proliferation. In this study, we found increased numbers of CD8 and CD4 T lymphocytes in thymus and spleen from Ink4a-/- mice. Unexpectedly, this was not related to an increase in T-cell division rates, which were similar in lymphoid organs of Ink4a-/- and wild-type mice. In contrast, T-cell apoptosis rates were significantly decreased in thymus and spleen from Ink4a-/- mice. Moreover, whereas p16Ink4a-deficient and wild-type T cells were equally sensitive to Fas or TCR-mediated apoptosis, the former were clearly more resistant to apoptosis induced by oxidative stress or gamma irradiation. Our results indicate that p16Ink4a function is associated with T-cell apoptosis, and subsequently contributes to the control of T-cell population size in lymphoid organs.