286 resultados para Transcatheter aortic valve replacement
em Université de Lausanne, Switzerland
Resumo:
Traditionally, the transcatheter aortic valve replacement is performed through a transapical, a transfemoral or a trans-subclavian approach. Recently, the transaortic approach for transcatheter aortic valve replacement through the distal part of the ascending aorta was successfully implemented in order to avoid peripheral vascular access-related complications and apical life-threatening haemorrhage. The Sapien? stent valve has great transaortic potential because it can be loaded 'upside down' in different generations of delivery systems. However, because of their health regulatory systems and despite the launch, in 2012, of the latest generation of the Ascendra? delivery system, the Ascendra+?, specifically designed for transapical and transaortic valve placements, several countries are still using the first generations of Ascendra? (Ascendra? 1 and 2). This device was specifically designed for transapical procedures, and retrograde stent-valve positioning through the stenotic aortic valve may be very challenging and risk the integrity of the aorta. We describe the manoeuvre required in order to pass the stenotic aortic valve safely in a retrograde direction using the Sapien? stent valve and the first generations of Ascendra?.
Resumo:
BACKGROUND: Transcatheter aortic valve-in-valve implantation is an emerging therapeutic alternative for patients with a failed surgical bioprosthesis and may obviate the need for reoperation. We evaluated the clinical results of this technique using a large, worldwide registry. METHODS AND RESULTS: The Global Valve-in-Valve Registry included 202 patients with degenerated bioprosthetic valves (aged 77.7±10.4 years; 52.5% men) from 38 cardiac centers. Bioprosthesis mode of failure was stenosis (n=85; 42%), regurgitation (n=68; 34%), or combined stenosis and regurgitation (n=49; 24%). Implanted devices included CoreValve (n=124) and Edwards SAPIEN (n=78). Procedural success was achieved in 93.1% of cases. Adverse procedural outcomes included initial device malposition in 15.3% of cases and ostial coronary obstruction in 3.5%. After the procedure, valve maximum/mean gradients were 28.4±14.1/15.9±8.6 mm Hg, and 95% of patients had ≤+1 degree of aortic regurgitation. At 30-day follow-up, all-cause mortality was 8.4%, and 84.1% of patients were at New York Heart Association functional class I/II. One-year follow-up was obtained in 87 patients, with 85.8% survival of treated patients. CONCLUSIONS: The valve-in-valve procedure is clinically effective in the vast majority of patients with degenerated bioprosthetic valves. Safety and efficacy concerns include device malposition, ostial coronary obstruction, and high gradients after the procedure.
Resumo:
OBJECTIVES: Management of degenerated aortic valve bioprosthesis classically requires redo surgery, but transcatheter aortic valve-in-valve implantation is becoming a valid alternative in selected cases. In the case of a degenerated Mitroflow bioprosthesis, TAVR is associated with an additional challenge due to a specific risk of coronary occlusion. We aimed to assess the safety and feasibility of transfemoral valve-in-valve implantation of the new Edwards Sapien 3 (Edwards Lifesciences) in a degenerated Mitroflow bioprosthesis (Sorin Group, Inc). METHODS: We report here the safety and feasibility of transfemoral valve-in-valve implantation of a 23 mm Edwards Sapien 3 in a degenerated 25 mm Mitroflow valve and describe the specific assessment of the risk of coronary obstruction using a multi-imaging modality. RESULTS: The final result showed an absence of aortic regurgitation and a mean transvalvular gradient of 14 mm Hg. The patient had no major adverse cardiovascular events at 30-day follow-up. CONCLUSION: Transcatheter valve-in-valve implantation of an Edwards Sapien 3 in a degenerated Mitroflow is feasible and safe, considering a careful assessment of the risk of coronary obstruction with Mitroflow bioprosthesis due to leaflets mounted externally to the stent.
Resumo:
OBJECTIVES: Due to the high prevalence of renal failure in transcatheter aortic valve replacement (TAVR) candidates, a non-contrast MR technique is desirable for pre-procedural planning. We sought to evaluate the feasibility of a novel, non-contrast, free-breathing, self-navigated three-dimensional (SN3D) MR sequence for imaging the aorta from its root to the iliofemoral run-off in comparison to non-contrast two-dimensional-balanced steady-state free-precession (2D-bSSFP) imaging. METHODS: SN3D [field of view (FOV), 220-370 mm(3); slice thickness, 1.15 mm; repetition/echo time (TR/TE), 3.1/1.5 ms; and flip angle, 115°] and 2D-bSSFP acquisitions (FOV, 340 mm; slice thickness, 6 mm; TR/TE, 2.3/1.1 ms; flip angle, 77°) were performed in 10 healthy subjects (all male; mean age, 30.3 ± 4.3 yrs) using a 1.5-T MRI system. Aortic root measurements and qualitative image ratings (four-point Likert-scale) were compared. RESULTS: The mean effective aortic annulus diameter was similar for 2D-bSSFP and SN3D (26.7 ± 0.7 vs. 26.1 ± 0.9 mm, p = 0.23). The mean image quality of 2D-bSSFP (4; IQR 3-4) was rated slightly higher (p = 0.03) than SN3D (3; IQR 2-4). The mean total acquisition time for SN3D imaging was 12.8 ± 2.4 min. CONCLUSIONS: Our results suggest that a novel SN3D sequence allows rapid, free-breathing assessment of the aortic root and the aortoiliofemoral system without administration of contrast medium. KEY POINTS: • The prevalence of renal failure is high among TAVR candidates. • Non-contrast 3D MR angiography allows for TAVR procedure planning. • The self-navigated sequence provides a significantly reduced scanning time.
Resumo:
Transapical aortic valve replacement through an apical aneurysm is traditionally contraindicated because of the risk of severe systemic embolization when thrombi are present. However, a chronic fibrotic aneurysm without apical thrombi carries a low risk of distal embolization and can be safely employed for a transapical transcatheter aortic valve replacement in case of absence of an alternative access site (severe vascular disease, small vascular sizes and diseased calcified aorta). We illustrate our experience with a 73-year-old patient suffering from symptomatic aortic valve stenosis, coronary artery disease with occluded left anterior descending artery, left ventricular apical aneurysm and severe peripheral vascular disease, who successfully underwent a transapical 26 mm Sapien? XT stent-valve implantation through the fibrotic thin akinetic apical wall.
Resumo:
Transcatheter aortic valve implantation is a feasible therapeutic option for selected patients with severe aortic stenosis and high or prohibitive risk for standard surgery. Lung transplant recipients are often considered high-risk patients for heart surgery because of their specific transplant-associated characteristics and comorbidities. We report a case of successful transfemoral transcatheter aortic valve replacement in a lung transplant recipient with a symptomatic severe aortic stenosis, severe left ventricular dysfunction, and end-stage renal failure 9 years after bilateral lung transplantation.
Resumo:
OBJECTIVES: Transcatheter aortic valve replacement (TAVR) provides good results in selected high-risk patients. However, it is unclear whether this procedure carries advantages in extreme-risk profile patients with logistic EuroSCORE above 35%. METHODS: From January 2009 to July 2011, of a total number of 92 transcatheter aortic valve procedures performed, 40 'extreme-risk' patients underwent transapical TAVR (TA-TAVR) (EuroSCORE above 35%). Variables were analysed as risk factors for hospital and mid-term mortality, and a 2-year follow-up (FU) was obtained. RESULTS: The mean age was: 81 ± 10 years. Twelve patients (30%) had chronic pulmonary disease, 32 (80%) severe peripheral vascular disease, 14 (35%) previous cardiac surgery, 19 (48%) chronic renal failure (2 in dialysis), 7 (17%) previous stroke (1 with disabilities), 3 (7%) a porcelain aorta and 12 (30%) were urgent cases. Mean left ventricle ejection fraction (LVEF) was 49 ± 13%, and mean logistic EuroSCORE was 48 ± 11%. Forty stent-valves were successfully implanted with six Grade-1 and one Grade-2 paravalvular leakages (success rate: 100%). Hospital mortality was 20% (8 patients). Causes of death following the valve academic research consortium (VARC) definitions were: life-threatening haemorrhage (1), myocardial infarction (1), sudden death (1), multiorgan failure (2), stroke (1) and severe respiratory dysfunction (2). Major complications (VARC definitions) were: myocardial infarction for left coronary ostium occlusion (1), life-threatening bleeding (2), stroke (2) and acute kidney injury with dialysis (2). Predictors for hospital mortality were: conversion to sternotomy, life-threatening haemorrhage, postoperative dialysis and long intensive care unit (ICU) stay. Variables associated with hospital mortality were: conversion to sternotomy (P = 0.03), life-threatening bleeding (P = 0.02), acute kidney injury with dialysis (P = 0.03) and prolonged ICU stay (P = 0.02). Mean FU time was 24 months: actuarial survival estimates for all-cause mortality at 6 months, 1 year, 18 months and 2 years were 68, 57, 54 and 54%, respectively. Patients still alive at FU were in good clinical condition, New York Heart Association (NYHA) class 1-2 and were never rehospitalized for cardiac decompensation. CONCLUSIONS: TA-TAVR in extreme-risk patients carries a moderate risk of hospital mortality. Severe comorbidities and presence of residual paravalvular leakages affect the mid-term survival, whereas surviving patients have an acceptable quality of life without rehospitalizations for cardiac decompensation.
Resumo:
BACKGROUND AND AIM OF THE STUDY: Transapical transcatheter aortic valve replacement (TAVR) is a new minimally invasive technique with a known risk of unexpected intra-procedural complications. Nevertheless, the clinical results are good and the limited amount of procedural adverse events confirms the usefulness of a synergistic surgical/anesthesiological management in case of unexpected emergencies. METHODS: A review was made of the authors' four-year database and other available literature to identify major and minor intra-procedural complications occurring during transapical TAVR procedures. All implants were performed under general anesthesia with a balloon-expandable Edwards Sapien stent-valve, and followed international guidelines on indications and techniques. RESULTS: Procedural success rates ranged between 94% and 100%. Life-threatening apical bleeding occurred very rarely (0-5%), and its incidence decreased after the first series of implants. Stent-valve embolization was also rare, with a global incidence ranging from 0-2%, with evidence of improvement after the learning curve. Rates of valve malpositioning ranged from 0% to < 3%, whereas the risk of coronary obstruction ranged from 0% to 3.5%. Aortic root rupture and dissection were dramatic events reported in 0-2% of transapical cases. Stent-valve malfunction was rarely reported (1-2%), whereas the valve-in-valve bailout procedure for malpositioning, malfunctioning or severe paravalvular leak was reported in about 1.0-3.5% of cases. Sudden hemodynamic management and bailout procedures such as valve-in-valve rescue or cannulation for cardiopulmonary bypass were more effective when planned during the preoperative phase. CONCLUSION: Despite attempts to avoid pitfalls, complications during transapical aortic valve procedures still occur. Preoperative strategic planning, including hemodynamic status management, alternative cannulation sites and bailout procedures, are highly recommended, particularly during the learning curve of this technique.
Resumo:
Although surgical aortic valve replacement has been the standard of care for patient with severe aortic stenosis, transcatheter aortic valve implantation (TAVI) is now a fair standard of care for patients not eligible or high risk for surgical treatment. The decision of therapeutic choice between TAVI and surgery considers surgical risk (estimated by the Euro-SCORE and STS-PROM) as well as many parameters that go beyond the assessment of the valvular disease's severity by echocardiography: a multidisciplinary assessment in "Heart Team" is needed to assess each case in all its complexity.
Resumo:
During transapical transcatheter aortic valve replacement (TA-TAVR), the apical closure remains a challenge for the surgeon, having the risk for ventricular tear and massive bleeding. Apical closure devices are already under clinical evaluation, but only a few can lead to a full percutaneous TA-TAVR. We describe the successful use of a 9-mm myocardial occluder (ventricular septal defect occluder) that was used to seal the apex after a standard TA-TAVR (using the Sapien XT 23-mm transcatheter valve and the Ascendra + delivery system). The placement of the nonmodified myocardial occluder was performed through the Ascendra + delivery system, with a very small amount of blood loss and an acceptable sealing of the apical tear. This approach is feasible and represents a further step toward true-percutaneous transapical heart valve procedures. Modified apical occluders are under evaluation in animal models.
Resumo:
Background: Transcatheter aortic valve implantations (TAVI) are indicated in high risk patients requiring aortic valve replacement (AVR). However, CT-scans, coronary angiograms and intraoperative aortographies can induce contrast-related nephro-toxicity with a concrete risk of acute postoperative renal failure, especially in severely diseased patients. To prevent this complication, we routinely perform transapical (TA) TAVI guided by transesophageal echocardiogram and fluoroscopy without angiography. Material and Methods: From November 2008 to December 2009, 31 high-risk patients suffering from severe symptomatic aortic stenosis underwent TA-TAVI in our institution. The preoperative imaging assessment (cardiac CT-scan and coronary angiogram) was performed no less than 10 days before the TA-TAVI in all patients (to recover the renal function) with a low-dose protocol for injected contrast medium (equivalent to the patient's weight for the CT-scan). During the TA-TAVI, the stent-valve positioning was performed without any contrast injection. Results: 32 consecutive stent-valve were successfully positioned in 31 patients (mean age 80.76 8 8.3 years; mean EuroSCORE: 32.2 8 12.9%) through a transapical access (1 patient required 2 valves for valve embolisation). The mean preoperative creatinine and urea blood levels were 102.6 8 67.7 _ g/dl (range 53-339 _ g/dl) and 8.45 8 4.9 mmol/l, respectively. A chronic renal insufficiency affected 12 patients (38.7%) with 1 patient in pre-dialysis. Postoperatively, no patient developed acute myocardial infarction, atrio-ventricular block or acute renal insufficiency (mean creatinine level: 89.7 8 64.55 _ g/dl; urea level: 7.11 8 3.47 mmol/l) and the 30-days mortality was 9.67% (3 patients). Conclusion: Specific preoperative and intraoperative protocols that require lowdoses or absence of contrast medium are useful to preserve the renal function in high risk patients operated for TAVI.
Resumo:
Bioprosthetic aortic valve replacement is the treatment of choice for patients over 65 years of age suffering from aortic valve disease, and for younger patients with contraindications to long-lasting anticoagulation. Despite several technical improvements to reduce the risk of structural valve degeneration (SVD), the risk of SVD still exists, in particular for hemodialysis patients and patients under 60 years of age at surgery. Redo open heart surgery is the treatment of choice in case of valve degeneration, but caries a higher surgical risk when elderly patients with comorbidities are concerned. In the last 5 years, transcatheter aortic "valve-in-valve" procedures represent a valid alternative to standard redo surgery in selected patients. Valve-in-valve procedures represent a less invasive approach in high-risk patients and the published results are very encouraging. Technical success rates of 100% have been reported, as have the absence of paravalvular leaks, acceptable trans-valvular gradients (depending on the size of the original bioprosthesis), and low complication rates. The current article focuses on choosing the correct transcutaneous valve to match the patient's existing bioprosthesis for valve-in-valve procedures.
Resumo:
OBJECTIVE: Off-pump trans left ventricular approach provides more precise deployment of stented aortic valve of any size with respect to the endovascular replacement. One of the key steps of this procedure is the ventricle repair after catheter withdrawing. We designed an animal study to compare the consistency of a sutureless repair of the left ventricle access using nitinol occluder with and without pericardial cuff on the ventricular side. METHODS: Material description: The Amplatz-nitinol occluder consists of two square heads squeezing ventricle wall in between them, sealing the defect. To improve its sealing property, a pericardial patch was sutured to the ventricular head of the occluder. Animal study setup: In adult pigs, a 30F sheath was inserted into the epigastric area through the cardiac apex, up to the left ventricle, simulating the approach for off-pump aortic valve replacement. The sheath was then removed and the ventricle closed with standard occluder in half of the animals, and cuffed occluder in the other half. Animals were followed-up for 3h, collecting haemodynamics data and pericardial bleeding. RESULTS: Device was successfully deployed in 12 animals in less than 1min. In the group where the standard occluder was used, bleeding during the deployment was 80+/-20ml and after the deployment was 800+/-20ml over 3h. In the group where the cuffed occluder was used, bleeding during the deployment was 85+/-20ml and after the deployment was 100+/-5ml over 3h. In the cuffed group, bleeding was significantly lower than the standard group, p-value being <0.001. CONCLUSIONS: The occluder is easy to use and the pericardial cuff dramatically increases its efficacy as demonstrated by a significant reduction of blood loss. The cuffed occluder opens the way for endoscopic, off-pump, transventricular aortic valve replacement.