19 resultados para Speech in Noise
em Université de Lausanne, Switzerland
Resumo:
Subjects with autism often show language difficulties, but it is unclear how they relate to neurophysiological anomalies of cortical speech processing. We used combined EEG and fMRI in 13 subjects with autism and 13 control participants and show that in autism, gamma and theta cortical activity do not engage synergistically in response to speech. Theta activity in left auditory cortex fails to track speech modulations, and to down-regulate gamma oscillations in the group with autism. This deficit predicts the severity of both verbal impairment and autism symptoms in the affected sample. Finally, we found that oscillation-based connectivity between auditory and other language cortices is altered in autism. These results suggest that the verbal disorder in autism could be associated with an altered balance of slow and fast auditory oscillations, and that this anomaly could compromise the mapping between sensory input and higher-level cognitive representations.
Resumo:
Top-down contextual influences play a major part in speech understanding, especially in hearing-impaired patients with deteriorated auditory input. Those influences are most obvious in difficult listening situations, such as listening to sentences in noise but can also be observed at the word level under more favorable conditions, as in one of the most commonly used tasks in audiology, i.e., repeating isolated words in silence. This study aimed to explore the role of top-down contextual influences and their dependence on lexical factors and patient-specific factors using standard clinical linguistic material. Spondaic word perception was tested in 160 hearing-impaired patients aged 23-88 years with a four-frequency average pure-tone threshold ranging from 21 to 88 dB HL. Sixty spondaic words were randomly presented at a level adjusted to correspond to a speech perception score ranging between 40 and 70% of the performance intensity function obtained using monosyllabic words. Phoneme and whole-word recognition scores were used to calculate two context-influence indices (the j factor and the ratio of word scores to phonemic scores) and were correlated with linguistic factors, such as the phonological neighborhood density and several indices of word occurrence frequencies. Contextual influence was greater for spondaic words than in similar studies using monosyllabic words, with an overall j factor of 2.07 (SD = 0.5). For both indices, context use decreased with increasing hearing loss once the average hearing loss exceeded 55 dB HL. In right-handed patients, significantly greater context influence was observed for words presented in the right ears than for words presented in the left, especially in patients with many years of education. The correlations between raw word scores (and context influence indices) and word occurrence frequencies showed a significant age-dependent effect, with a stronger correlation between perception scores and word occurrence frequencies when the occurrence frequencies were based on the years corresponding to the patients' youth, showing a "historic" word frequency effect. This effect was still observed for patients with few years of formal education, but recent occurrence frequencies based on current word exposure had a stronger influence for those patients, especially for younger ones.
Resumo:
The goal of this study was to investigate the impact of computing parameters and the location of volumes of interest (VOI) on the calculation of 3D noise power spectrum (NPS) in order to determine an optimal set of computing parameters and propose a robust method for evaluating the noise properties of imaging systems. Noise stationarity in noise volumes acquired with a water phantom on a 128-MDCT and a 320-MDCT scanner were analyzed in the spatial domain in order to define locally stationary VOIs. The influence of the computing parameters in the 3D NPS measurement: the sampling distances bx,y,z and the VOI lengths Lx,y,z, the number of VOIs NVOI and the structured noise were investigated to minimize measurement errors. The effect of the VOI locations on the NPS was also investigated. Results showed that the noise (standard deviation) varies more in the r-direction (phantom radius) than z-direction plane. A 25 × 25 × 40 mm(3) VOI associated with DFOV = 200 mm (Lx,y,z = 64, bx,y = 0.391 mm with 512 × 512 matrix) and a first-order detrending method to reduce structured noise led to an accurate NPS estimation. NPS estimated from off centered small VOIs had a directional dependency contrary to NPS obtained from large VOIs located in the center of the volume or from small VOIs located on a concentric circle. This showed that the VOI size and location play a major role in the determination of NPS when images are not stationary. This study emphasizes the need for consistent measurement methods to assess and compare image quality in CT.
Resumo:
This paper examines argumentative talk-in-interaction in the workplace. It focuses on counter-argumentative references, which consist of the various resources that the opponent uses to refer to the origin/source of his/her opposition, namely the confronted position and the person who expressed it. Particular attention is paid to the relationship - in terms of sequential positioning and referential extension - between reported speech, polyphony, pointing gestures and shifts in gaze direction. Data are taken from workplace management meetings that have been recorded in New Zealand by the Language in the Workplace Project.
Resumo:
The genomic architecture of the 10q22q23 region is characterised by two low-copy repeats (LCRs3 and 4), and deletions in this region appear to be rare. We report the clinical and molecular characterisation of eight novel deletions and six duplications within the 10q22.3q23.3 region. Five deletions and three duplications occur between LCRs3 and 4, whereas three deletions and three duplications have unique breakpoints. Most of the individuals with the LCR3-4 deletion had developmental delay, mainly affecting speech. In addition, macrocephaly, mild facial dysmorphisms, cerebellar anomalies, cardiac defects and congenital breast aplasia were observed. For congenital breast aplasia, the NRG3 gene, known to be involved in early mammary gland development in mice, is a putative candidate gene. For cardiac defects, BMPR1A and GRID1 are putative candidate genes because of their association with cardiac structure and function. Duplications between LCRs3 and 4 are associated with variable phenotypic penetrance. Probands had speech and/or motor delays and dysmorphisms including a broad forehead, deep-set eyes, upslanting palpebral fissures, a smooth philtrum and a thin upper lip. In conclusion, duplications between LCRs3 and 4 on 10q22.3q23.2 may lead to a distinct facial appearance and delays in speech and motor development. However, the phenotypic spectrum is broad, and duplications have also been found in healthy family members of a proband. Reciprocal deletions lead to speech and language delay, mild facial dysmorphisms and, in some individuals, to cerebellar, breast developmental and cardiac defects.
Resumo:
OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.
Resumo:
A nyone traveling to the United States from countries other than New Zealand will be surprised by the prevalence of health-related advertisements on television, including ads for drugs. Typically, these TV ads follow a pattern: an ad for a burger at only 99 cents, followed by one for a proton-pump inhibitor, then an ad on healthy home-cooked food delivered directly to your home and an ad for a home-based abdominal workout DVD, followed by an ad for a lipid-lowering drug. There are, however, nuances. After 8 pm, the visitor might encounter an ad for the "little blue pill." This sequence sometimes includes an ad featuring antihistamines for allergic rhinitis in spring and one promoting antidepressants in the winter. Such direct-to-consumer advertising (DTCA) of prescription drugs is usual business in the United States and New Zealand but is prohibited in the rest of the world. Why? Because DTCA for prescribing drugs has pros and cons (discussed elsewhere,1-3 including in JGIM4) that are balanced differently in different countries. Constitutional factors-such as the First Amendment protections on speech, including commercial speech, in the United States5 -as well as patient and population safety considerations, which all differ across countries, modulate reactions to DTCA. Additionally, lack of robust data on the impact of DTCA on prescription drug use adds to the confusion. Evidence, though limited, suggests that DTCA increases drug sales. However, whether the increase in sales corrects existing underuse or encourages over/misuse is not clear.
Resumo:
When speech is degraded, word report is higher for semantically coherent sentences (e.g., her new skirt was made of denim) than for anomalous sentences (e.g., her good slope was done in carrot). Such increased intelligibility is often described as resulting from "top-down" processes, reflecting an assumption that higher-level (semantic) neural processes support lower-level (perceptual) mechanisms. We used time-resolved sparse fMRI to test for top-down neural mechanisms, measuring activity while participants heard coherent and anomalous sentences presented in speech envelope/spectrum noise at varying signal-to-noise ratios (SNR). The timing of BOLD responses to more intelligible speech provides evidence of hierarchical organization, with earlier responses in peri-auditory regions of the posterior superior temporal gyrus than in more distant temporal and frontal regions. Despite Sentence content × SNR interactions in the superior temporal gyrus, prefrontal regions respond after auditory/perceptual regions. Although we cannot rule out top-down effects, this pattern is more compatible with a purely feedforward or bottom-up account, in which the results of lower-level perceptual processing are passed to inferior frontal regions. Behavioral and neural evidence that sentence content influences perception of degraded speech does not necessarily imply "top-down" neural processes.
Resumo:
The authors report three children who suffered temporary oromotor or speech disturbances as focal epileptic manifestations within the frame of benign partial epilepsy of childhood with rolandic spikes and review similar cases described in the literature. The deficit can occur as an initial symptom of the disorder without visible epileptic seizures and interferes in a variable way with simple voluntary oromotor functions or complex movements including speech production, depending on the exact location and spread of the discharging epileptic focus around the perisylvian region. The most severe deficit produces the anterior operculum syndrome. More subtle non-linguistic deficits such as intermittent drooling, oromotor apraxia or dysfluency, as well as linguistic ones involving phonologic production, can occur. The rapidity of onset, progression and recovery of the deficit is very variable as well as its duration and presumably reflects the degree of epileptic activity. In some cases, rapid improvement with antiepileptic medication occurs and coincidence between the paroxysmal EEG activity (which is usually bilateral) and the functional deficit is seen. The clinical and EEG profile of the seizures disorder and the dynamic of the deficit in these cases bear a strong resemblance to what is seen in the acquired epilepsy-aphasia syndrome (Landau and Kleffner). The variations in clinical symptoms appear more related to the main site, local extension and bilaterality of the epileptic foci rather than a basic difference in physiopathology.
Resumo:
The aim was to propose a strategy for finding reasonable compromises between image noise and dose as a function of patient weight. Weighted CT dose index (CTDI(w)) was measured on a multidetector-row CT unit using CTDI test objects of 16, 24 and 32 cm in diameter at 80, 100, 120 and 140 kV. These test objects were then scanned in helical mode using a wide range of tube currents and voltages with a reconstructed slice thickness of 5 mm. For each set of acquisition parameter image noise was measured and the Rose model observer was used to test two strategies for proposing a reasonable compromise between dose and low-contrast detection performance: (1) the use of a unique noise level for all test object diameters, and (2) the use of a unique dose efficacy level defined as the noise reduction per unit dose. Published data were used to define four weight classes and an acquisition protocol was proposed for each class. The protocols have been applied in clinical routine for more than one year. CTDI(vol) values of 6.7, 9.4, 15.9 and 24.5 mGy were proposed for the following weight classes: 2.5-5, 5-15, 15-30 and 30-50 kg with image noise levels in the range of 10-15 HU. The proposed method allows patient dose and image noise to be controlled in such a way that dose reduction does not impair the detection of low-contrast lesions. The proposed values correspond to high- quality images and can be reduced if only high-contrast organs are assessed.
Resumo:
Behavioral and brain responses to identical stimuli can vary with experimental and task parameters, including the context of stimulus presentation or attention. More surprisingly, computational models suggest that noise-related random fluctuations in brain responses to stimuli would alone be sufficient to engender perceptual differences between physically identical stimuli. In two experiments combining psychophysics and EEG in healthy humans, we investigated brain mechanisms whereby identical stimuli are (erroneously) perceived as different (higher vs lower in pitch or longer vs shorter in duration) in the absence of any change in the experimental context. Even though, as expected, participants' percepts to identical stimuli varied randomly, a classification algorithm based on a mixture of Gaussians model (GMM) showed that there was sufficient information in single-trial EEG to reliably predict participants' judgments of the stimulus dimension. By contrasting electrical neuroimaging analyses of auditory evoked potentials (AEPs) to the identical stimuli as a function of participants' percepts, we identified the precise timing and neural correlates (strength vs topographic modulations) as well as intracranial sources of these erroneous perceptions. In both experiments, AEP differences first occurred ∼100 ms after stimulus onset and were the result of topographic modulations following from changes in the configuration of active brain networks. Source estimations localized the origin of variations in perceived pitch of identical stimuli within right temporal and left frontal areas and of variations in perceived duration within right temporoparietal areas. We discuss our results in terms of providing neurophysiologic evidence for the contribution of random fluctuations in brain activity to conscious perception.