65 resultados para Spectral peak track
em Université de Lausanne, Switzerland
Resumo:
In this study we propose an evaluation of the angular effects altering the spectral response of the land-cover over multi-angle remote sensing image acquisitions. The shift in the statistical distribution of the pixels observed in an in-track sequence of WorldView-2 images is analyzed by means of a kernel-based measure of distance between probability distributions. Afterwards, the portability of supervised classifiers across the sequence is investigated by looking at the evolution of the classification accuracy with respect to the changing observation angle. In this context, the efficiency of various physically and statistically based preprocessing methods in obtaining angle-invariant data spaces is compared and possible synergies are discussed.
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: 17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.
Resumo:
Intracardiac organization indices such as atrial fibril- lation (AF) cycle length (AFCL) have been used to track the efficiency of stepwise catheter ablation (step-CA) of long-standing persistent AF (pers-AF), however, with lim- ited success. The timing between nearby bipolar intracar- diac electrograms (EGMs) reflects the spatial dynamics of wavelets during AF. The extent of synchronization between EGMs is an indirect measure of AF spatial organization. The synchronization between nearby EGMs during step- CA of pers-AF was evaluated using new indices based on the cross-correlation. The first one (spar(W)) quantifies the sparseness of the cross-correlation of local activation times. The second one (OI(W)) reflects the local concen- tration around the largest peak of the cross-correlation. By computing their relative evolution during step-CA until AF termination (AF-term), we found that OI(W) appeared su- perior to AFCL and spar(W) to track the effect of step-CA "en route" to AF-term.
Resumo:
South Peak is a 7-Mm3 potentially unstable rock mass located adjacent to the 1903 Frank Slide on Turtle Mountain, Alberta. This paper presents three-dimensional numerical rock slope stability models and compares them with a previous conceptual slope instability model based on discontinuity surfaces identified using an airborne LiDAR digital elevation model (DEM). Rock mass conditions at South Peak are described using the Geological Strength Index and point load tests, whilst the mean discontinuity set orientations and characteristics are based on approximately 500 field measurements. A kinematic analysis was first conducted to evaluate probable simple discontinuity-controlled failure modes. The potential for wedge failure was further assessed by considering the orientation of wedge intersections over the airborne LiDAR DEM and through a limit equilibrium combination analysis. Block theory was used to evaluate the finiteness and removability of blocks in the rock mass. Finally, the complex interaction between discontinuity sets and the topography within South Peak was investigated through three-dimensional distinct element models using the code 3DEC. The influence of individual discontinuity sets, scale effects, friction angle and the persistence along the discontinuity surfaces on the slope stability conditions were all investigated using this code.
Resumo:
Recently, Revil & Florsch proposed a novel mechanistic model based on the polarization of the Stern layer relating the permeability of granular media to their spectral induced polarization (SIP) characteristics based on the formation of polarized cells around individual grains. To explore the practical validity of this model, we compare it to pertinent laboratory measurements on samples of quartz sands with a wide range of granulometric characteristics. In particular, we measure the hydraulic and SIP characteristics of all samples both in their loose, non-compacted and compacted states, which might allow for the detection of polarization processes that are independent of the grain size. We first verify the underlying grain size/permeability relationship upon which the model of Revil & Florsch is based and then proceed to compare the observed and predicted permeability values for our samples by substituting the grain size characteristics by corresponding SIP parameters, notably the so-called Cole-Cole time constant. In doing so, we also asses the quantitative impact of an observed shift in the Cole-Cole time constant related to textural variations in the samples and observe that changes related to the compaction of the samples are not relevant for the corresponding permeability predictions. We find that the proposed model does indeed provide an adequate prediction of the overall trend of the observed permeability values, but underestimates their actual values by approximately one order-of-magnitude. This discrepancy in turn points to the potential importance of phenomena, which are currently not accounted for in the model and which tend to reduce the characteristic size of the prevailing polarization cells compared to the considered model, such as, for example, membrane polarization, contacts of double-layers of neighbouring grains, and incorrect estimation of the size of the polarized cells because of the irregularity of natural sand grains.
Resumo:
Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.
Resumo:
The aim of this study was to characterize the effect of a 5 km running time trial on the neuromuscular properties of the plantar flexors. Eleven well-trained triathletes performed a series of neuromuscular tests before and immediately after the run on a 200 m indoor track. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Maximal soleus H-reflexes and M-waves were evoked at rest (i.e. H (MAX) and M (MAX), respectively) and during MVC (i.e. H (SUP) and M (SUP), respectively). MVC significantly declined (-27%; P < 0.001) after the run, due to decrease in muscle activation (-8%; P < 0.05) and M (MAX)-normalized EMG activity (-13%; P < 0.05). Significant reductions in M-wave amplitudes (M (MAX): -13% and M (SUP): -16%; P < 0.05) as well as H (MAX)/M (MAX) (-37%; P < 0.01) and H (SUP)/M (SUP) (-25%; P < 0.05) ratios occurred with fatigue. Following exercise, the single twitch was characterized by lower peak torque (-16%; P < 0.001) as well as shorter contraction (-19%; P < 0.001) and half-relaxation (-24%; P < 0.001) times. In conclusion, the reduction in plantar flexors strength induced by a 5 km running time trial is caused by peripheral adjustments, which are attributable to a failure of the neuromuscular transmission and excitation-contraction coupling. Fatigue also decreased the magnitude of efferent motor outflow from spinal motor neurons to the plantar flexors and part of this suboptimal neural drive is the result of an inhibition of soleus motoneuron pool reflex excitability.
Resumo:
INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is a new ventilatory mode in which ventilator settings are adjusted based on the electrical activity detected in the diaphragm (Eadi). This mode offers significant advantages in mechanical ventilation over standard pressure support (PS) modes, since ventilator input is determined directly from patient ventilatory demand. Therefore, it is expected that tidal volume (Vt) under NAVA would show better correlation with Eadi compared with PS, and exhibit greater variability due to the variability in the Eadi input to the ventilator. OBJECTIVES. To compare tidal volume variability in PS and NAVA ventilation modes, and its correlation with patient ventilatory demand (as characterized by maximum Eadi). METHODS. Acomparative study of patient-ventilator interaction was performed for 22 patients during standard PS with clinician determined ventilator settings; and NAVA, with NAVA gain set to ensure the same peak airway pressure as the total pressure obtained in PS. A 20 min continuous recording was performed in each ventilator mode. Respiratory rate, Vt, and Eadi were recorded. Tidal volume variance and Pearson correlation coefficient between Vt and Eadi were calculated for each patient. A periodogram was plotted for each ventilator mode and each patient, showing spectral power as a function of frequency to assess variability. RESULTS. Median, lower quartile and upper quartile values for Vt variance and Vt/Eadi correlation are shown in Table 1. The NAVA cohort exhibits substantially greater correlation and variance than the PS cohort. Power spectrums for Vt and Eadi are shown in Fig. 1 (PS and NAVA) for a typical patient. The enlarged section highlights how changes in Eadi are highly synchronized with NAVA ventilation, but less so for PS. CONCLUSIONS. There is greater variability in tidal volume and correlation between tidal volume and diaphragmatic electrical activity with NAVA compared to PS. These results are consistent with the improved patient-ventilator synchrony reported in the literature.