236 resultados para Sodium balance
em Université de Lausanne, Switzerland
Resumo:
Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.
Resumo:
Studies aiming at the elucidation of the genetic basis of rare monogenic forms of hypertension have identified mutations in genes coding for the epithelial sodium channel ENaC, for the mineralocorticoid receptor, or for enzymes crucial for the synthesis of aldosterone. These genetic studies clearly demonstrate the importance of the regulation of Na(+) absorption in the aldosterone-sensitive distal nephron (ASDN), for the maintenance of the extracellular fluid volume and blood pressure. Recent studies aiming at a better understanding of the cellular and molecular basis of ENaC-mediated Na(+) absorption in the distal part of nephron, have essentially focused on the regulation ENaC activity and on the aldosterone-signaling cascade. ENaC is a constitutively open channel, and factors controlling the number of active channels at the cell surface are likely to have profound effects on Na(+) absorption in the ASDN, and in the amount of Na(+) that is excreted in the final urine. A number of membrane-bound proteases, kinases, have recently been identified that increase ENaC activity at the cell surface in heterologous expressions systems. Ubiquitylation is a general process that regulates the stability of a variety of target proteins that include ENaC. Recently, deubiquitylating enzymes have been shown to increase ENaC activity in heterologous expressions systems. These regulatory mechanisms are likely to be nephron specific, since in vivo studies indicate that the adaptation of the renal excretion of Na(+) in response to Na(+) diet occurs predominantly in the early part (the connecting tubule) of the ASDN. An important work is presently done to determine in vivo the physiological relevance of these cellular and molecular mechanisms in regulation of ENaC activity. The contribution of the protease-dependent ENaC regulation in mediating Na(+) absorption in the ASDN is still not clearly understood. The signaling pathway that involves ubiquitylation of ENaC does not seem to be absolutely required for the aldosterone-mediated control of ENaC. These in vivo physiological studies presently constitute a major challenge for our understanding of the regulation of ENaC to maintain the Na(+) balance.
Resumo:
Blood pressure follows a circadian rhythm with a physiologic 10% to 20% decrease during the night. There is now increasing evidence that a blunted decrease or an increase in nighttime blood pressure is associated with a greater prevalence of target organ damage and a faster disease progression in patients with chronic kidney diseases. Several factors contribute to the changes in nighttime blood pressure including changes in hormonal profiles such as variations in the activity of the renin-angiotensin and the sympathetic nervous systems. Recently, it was hypothesized that the absence of a blood pressure decrease during the nighttime (nondipping) is in fact a pressure-natriuresis mechanism enabling subjects with an impaired capacity to excrete sodium to remain in sodium balance. In this article, we review the clinical and epidemiologic data that tend to support this hypothesis. Moreover, we show that most, if not all, clinical conditions associated with an impaired dipping profile are diseases associated either with a low glomerular filtration rate and/or an impaired ability to excrete sodium. These observations would suggest that renal function, and most importantly the ability to eliminate sodium during the day, is indeed a key determinant of the circadian rhythm of blood pressure.
Resumo:
BACKGROUND: Depending on its magnitude, lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal, renal tubular, and renal hemodynamic responses, thereby mimicking the renal responses observed in clinical conditions characterized by a low effective arterial volume such as congestive heart failure. Our objective was to evaluate the impact of angiotensin II receptor blockade with candesartan on the renal hemodynamic and urinary excretory responses to a progressive orthostatic stress in normal subjects. METHODS: Twenty healthy men were submitted to three levels of LBNP (0, -10, and -20 mbar or 0, -7.5, and -15 mm Hg) for 1 hour according to a crossover design with a minimum of 2 days between each level of LBNP. Ten subjects were randomly allocated to receive a placebo and ten others were treated with candesartan 16 mg orally for 10 days before and during the three levels of LBNP. Systemic and renal hemodynamics, renal sodium excretions, and the hormonal response were measured hourly before, during, and for 2 hours after LBNP. RESULTS: During placebo, LBNP induced no change in systemic and renal hemodynamics, but sodium excretion decreased dose dependently with higher levels of LBNP. At -20 mbar, cumulative 3-hour sodium balance was negative at -2.3 +/- 2.3 mmol (mean +/- SEM). With candesartan, mean blood pressure decreased (76 +/- 1 mm Hg vs. 83 +/- 3 mm Hg, candesartan vs. placebo, P < 0.05) and renal plasma flow increased (858 +/- 52 mL/min vs. 639 +/- 36 mL/min, candesartan vs. placebo, P < 0.05). Glomerular filtration rate (GFR) was not significantly higher with candesartan (127 +/- 7 mL/min in placebo vs. 144 +/- 12 mL/min in candesartan). No significant decrease in sodium and water excretion was found during LBNP in candesartan-treated subjects. At -20 mbar, the 3-hour cumulative sodium excretion was + 4.6 +/- 1.4 mmol in the candesartan group (P= 0.02 vs. placebo). CONCLUSION: Selective blockade of angiotensin II type 1 (AT1) receptors with candesartan increases renal blood flow and prevents the antinatriuresis during sustained lower body negative pressure despite a modest decrease in blood pressure. These results thus provide interesting insights into potential benefits of AT1 receptor blockade in sodium-retaining states such as congestive heart failure.
Resumo:
The epithelial sodium channel (ENaC) is a key element for the maintenance of sodium balance and the regulation of blood pressure. Three homologous ENaC subunits (alpha, beta and gamma) assemble to form a highly Na+-selective channel. However, the subunit stoichiometry of ENaC has not yet been solved. Quantitative analysis of cell surface expression of ENaC alpha, beta and gamma subunits shows that they assemble according to a fixed stoichiometry, with alpha ENaC as the most abundant subunit. Functional assays based on differential sensitivities to channel blockers elicited by mutations tagging each alpha, beta and gamma subunit are consistent with a four subunit stoichiometry composed of two alpha, one beta and one gamma. Expression of concatameric cDNA constructs made of different combinations of ENaC subunits confirmed the four subunit channel stoichiometry and showed that the arrangement of the subunits around the channel pore consists of two alpha subunits separated by beta and gamma subunits.
Resumo:
Neuropeptide Y (NPY) is present in the adrenal medulla, in sympathetic neurons as well as in the circulation. This peptide not only exerts a direct vasoconstrictor effect, but also potentiates the vasoconstriction evoked by norepinephrine and sympathetic nerve stimulation. The vasoconstrictor effect of norepinephrine is also enhanced by salt loading and reduced by salt depletion. The purpose of this study was therefore to assess whether there exists a relationship between dietary sodium intake and the levels of circulating NPY. Uninephrectomized normotensive rats were maintained for 3 weeks either on a low, a regular or a high sodium intake. On the day of the experiment, plasma levels of NPY and catecholamines were measured in the unanesthetized animals. There was no significant difference in plasma norepinephrine and epinephrine levels between the 3 groups of rats. Plasma NPY levels were the lowest (65.4 +/- 8.8 fmol/ml, n-10, Mean +/- SEM) in salt-restricted and the highest (151.2 +/- 25 fmol/ml, n-14, p less than 0.02) in salt-loaded animals. Intermediate values were obtained in rats kept on a regular sodium intake (117.6 +/- 20.1 fmol/ml). These findings are therefore compatible with the hypothesis that sodium balance might to some extent influence blood pressure regulation via changes in circulating NPY levels which in turn modify blood pressure responsiveness.
Resumo:
The circadian clock contributes to the control of BP, but the underlying mechanisms remain unclear. We analyzed circadian rhythms in kidneys of wild-type mice and mice lacking the circadian transcriptional activator clock gene. Mice deficient in clock exhibited dramatic changes in the circadian rhythm of renal sodium excretion. In parallel, these mice lost the normal circadian rhythm of plasma aldosterone levels. Analysis of renal circadian transcriptomes demonstrated changes in multiple mechanisms involved in maintaining sodium balance. Pathway analysis revealed the strongest effect on the enzymatic system involved in the formation of 20-HETE, a powerful regulator of renal sodium excretion, renal vascular tone, and BP. This correlated with a significant decrease in the renal and urinary content of 20-HETE in clock-deficient mice. In summary, this study demonstrates that the circadian clock modulates renal function and identifies the 20-HETE synthesis pathway as one of its principal renal targets. It also suggests that the circadian clock affects BP, at least in part, by exerting dynamic control over renal sodium handling.
Resumo:
OBJECTIVES: Renal tubular sodium handling was measured in healthy subjects submitted to acute and chronic salt-repletion/salt-depletion protocols. The goal was to compare the changes in proximal and distal sodium handling induced by the two procedures using the lithium clearance technique. METHODS: In nine subjects, acute salt loading was obtained with a 2 h infusion of isotonic saline, and salt depletion was induced with a low-salt diet and furosemide. In the chronic protocol, 15 subjects randomly received a low-, a regular- and a high-sodium diet for 1 week. In both protocols, renal and systemic haemodynamics and urinary electrolyte excretion were measured after an acute water load. In the chronic study, sodium handling was also determined, based on 12 h day- and night-time urine collections. RESULTS: The acute and chronic protocols induced comparable changes in sodium excretion, renal haemodynamics and hormonal responses. Yet, the relative contribution of the proximal and distal nephrons to sodium excretion in response to salt loading and depletion differed in the two protocols. Acutely, subjects appeared to regulate sodium balance mainly by the distal nephron, with little contribution of the proximal tubule. In contrast, in the chronic protocol, changes in sodium reabsorption could be measured both in the proximal and distal nephrons. Acute water loading was an important confounding factor which increased sodium excretion by reducing proximal sodium reabsorption. This interference of water was particularly marked in salt-depleted subjects. CONCLUSION: Acute and chronic salt loading/salt depletion protocols investigate different renal mechanisms of control of sodium balance. The endogenous lithium clearance technique is a reliable method to assess proximal sodium reabsorption in humans. However, to investigate sodium handling in diseases such as hypertension, lithium should be measured preferably on 24 h or overnight urine collections to avoid the confounding influence of water.
Resumo:
Dans les cellules épithéliales sensibles à l'aldostérone, le canal sodique épithélial (ENaC) joue un rôle critique dans le contrôle de l'équilibre sodique, le volume sanguin, et la pression sanguine. Le rôle d'ENaC est bien caractérisé dans le rein et les poumons, cependant le rôle d'ENaC et son régulateur positif la protéase activatrice de canal 1 (CAP1 /Prss8) sur le transport sodique dans le côlon reste en grande partie inconnu. Nous avons étudié l'importance d'ENaC et de CAPMPrss8 dans le côlon. Les souris déficientes pour la sous- unité aENaC (souris ScnnlaKO) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diète normale (RS) ou pauvre en sodium (LS), la différence de potentiel rectale sensible à l'amiloride (APDamii) était drastiquement diminuée et son rythme circadien atténué. Sous diète normale (RS) ou diète riche en sodium (HS) ou fort chargement de potassium, le sodium et le potassium plasmatique et urinaire n'étaient pas significativement changé. Cependant, sous LS, les souris Senni aK0 perdaient des quantités significativement augmentées de sodium dans leurs fèces, accompagnées par de très hauts taux d'aldostérone plasmatique et une rétention urinaire en sodium augmentée. Les souris déficientes en CAPl/PmS (Prss8K0) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diètes RS et HS cependant, les souris Prss8KO montraient une diminution significative du APDamil dans l'après-midi, mais le rythme circadien était maintenu. Sous diète LS, la perte de sodium par les fèces était accompagnée par des niveaux d'aldostérone plasmatiques plus élevés. Par conséquent, nous avons identifié la protéase activatrice de canal CAP 1 IPrss8 comme un régulateur important d'ENaC dans le côlon in vivo. De plus, nous étudions l'importance d'ENaC et de CAPIIPrss8 dans les conditions pathologiques comme les maladies inflammatoires chroniques de l'intestin (MICI). Le résultat préliminaire out montre qu'une déficience d'Prss8 mènait à la détérioration de la colite induite par le DSS comparé aux modèles contrôles respectifs. En résumé, l'étude a montré que sous restriction de sel, l'absence d'ENaC dans Pépithélium de surface du côlon était compensée par 1'activation du système rénine-angiotensine- aldostérone (RAAS) dans le rein. Ceci a mené à un pseudohypoaldostéronisme de type I spécifique au côlon avec résistance aux minéralocorticoïdes sans signe d'altération de rétention de potassium. - In aldosterone-responsive epithelial cells of kidney and colon, the epithelial sodium channel (ENaC) plays a critical role in the control of sodium balance, blood volume, and blood pressure. The role of ENaC is well characterized in kidney and lung, whereas role of ENaC and its positive regulator channel-activating protease 1 (CAPl/PrasS) on sodium transport in colon is largely unknown. We have investigated the importance of ENaC and CAPI/Prss8 in colon for sodium and potassium balance. Mice lacking the aENaC subunit (Scnnla mice) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Under regular (RS) or low salt (LS) diet, the amiloride sensitive rectal potential difference (APDamii) was drastically decreased and its circadian rhythm blunted. Under regular salt (RS) or high salt (HS) diets or under potassium loading, plasma and urinary sodium and potassium were not significantly changed. However, upon LS, the ScnnlaK0 mice lost significant amounts of sodium in their feces, accompanied by very high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAPl/PrasS (Prss8K0) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Upon RS and HS diets, however, Prss8K0 exhibited a significantly reduced APDamii in the afternoon, but its circadian rhythm was maintained. Upon LS diet, sodium loss through feces was accompanied by higher plasma aldosterone levels. Thus, we have identified the channel-activating protease CAPl/Prss8 as an important in vivo regulator of ENaC in colon. Furthermore, we are investigating the importance of ENaC and CAPI/Prss8 in pathological conditions like inflammatory bowel disease (IBD). Preliminary data showed that PmS-deficiency led to worsening of DSS-induced colitis as compared to their respective controls. Overall, the present study has shown that under salt restriction, the absence of ENaC in colonic surface epithelium was compensated by the activation of renin-angiotensin- aldosterone (RAAS) system in the kidney. This led to a colon specific pseudohypoaldosteroni sm type 1 with mineralocorticoid resistance without evidence of impaired potassium retention.
Resumo:
Sixteen patients with refractory hypertension were submitted to vigorous sodium depletion while cardiovascular homeostasis was monitored with measurements of hormonal and hemodynamic parameters and repeat saralasin tests. This regimen resulted in a negative sodium balance by an average of 300 mEq. The loss of sodium closely correlated to the decrease of body weight (r = 0.70, p less than 0.005). Blood pressure (BP) decreased from 176/166 +/- 8/3 to 155/109 +/-6/3 mm Hg. There was a significant correlation between percent increments in plasma renin activity (PRA) and the rise in plasma norepinephrine (r = 0.68, p less than 0.05) and a close negative correlation between percent increase in PRA and the ratio of fall in mean blood pressure (MAP) per unit of weight loss (r = -0.73, p less than 0.005). Thus, patients with the least percent increase in PRA demonstrated the greatest fall in BP per unit of weight loss, indicating that relative rather than absolute elevation of renin may be the factor limiting antihypertensive efficacy of sodium depletion. Sodium depletion induced increase in peripheral resistance and decrease in cardiac output, both mostly attributable to relative hyperreninemia. Indeed, the adverse hemodynamic changes were reversed by angiotensin inhibition, during which BP normalized. It is concluded that vigorous sodium depletion complemented by angiotensin blockade or suppression with sympatholytic agents improves management of otherwise refractory hypertension.
Resumo:
SUMMARY Regulation of sodium excretion by the kidney is a key mechanism in the long term regulation of blood pressure, and when altered it constitutes a risk factor for the appearance of arterial hypertension. Aldosterone, which secretion depends upon salt intake in the diet, is a steroid hormone that regulates sodium reabsorption in the distal part of the nephron (functional unit of the kidney) by modulating gene transcription. It has been shown that it can act synergistically with the peptidic hormone insulin through the interaction of their signalisation pathways. Our work consisted of two distinct parts: 1) the in vitro and in vivo characterisation of Glucocorticoid-Induced Leucine Zipper (GILZ) (an aldosterone-induced gene) mechanism of action; 2) the in vitro characterisation of insulin mechanism of action and its interaction with aldosterone. GILZ mRNA, coded by the TSC22D3 gene, is strongly induced by aldosterone in the cell line of principal cells of the cortical collecting duct (CCD) mpkCCDc14, suggesting that GILZ is a mediator of aldosterone response. Co-expression of GILZ and the amiloride-sensitive epithelial sodium channel ENaC in vitro in the Xenopus oocyte expression system showed that GILZ has no direct effect on the ENaC-mediated Na+ current in basal conditions. To define the role of GILZ in the kidney and in other organs (colon, heart, skin, etc.), a conditional knock-out mouse is being produced and will allow the in vivo study of its role. Previous data showed that insulin induced a transepithelial sodium transport at supraphysiological concentrations. Insulin and the insulin-like growth factor 1 (IGF-1) are able to bind to each other receptor with an affinity 50 to 100 times lower than to their cognate receptor. Our starting hypothesis was that the insulin effect observed at these supraphysiological concentrations is actually mediated by the IGF receptor type 1 (IGF-1R). In a new cell line that presents all the characteristics of the principal cells of the CCD (mCCDc11) we have shown that both insulin and IGF-1 induce a physiologically significant increase of Na+ transport through the activation of IGF-1R. Aldosterone and insulin/IGF-1 have an additive effect on Na+ transport, through the activation of the PI3-kinase (PI3-K) pathway and the phosphorylation of the serum- and glucocorticoid-induced kinase 1 (Sgk1) by the IGF-1R, and the induction of Sgk1 expression by aldosterone. Thus, Sgk1 integrates IGF-1/insulin and aldosterone effects. We suggest that IGF-1 is physiologically relevant in the modulation of sodium balance, while insulin can only regulate Na+ transport at supraphysiological conditions. Both hormones would bind to the IGF-1R and induce Na+ transport by activating the PI3-K PDK1/2 - Sgk1 pathway. We have shown for the first time that Sgk1 is expressed and phosphorylated in principal cells of the CCD in basal conditions, although the mechanism that maintains Sgk1 phosphorylation is not known. This new role for IGF-1 suggests that it could be a salt susceptibility gene. In effect, IGF-1 stimulates Na+ and water transport in the kidney in vivo. Moreover, 35 % of the acromegalic patients (overproduction of growth hormone and IGF-1) are hypertensives (higher proportion than in normal population), and genetic analysis suggest a link between the IGF-1 gene locus and blood pressure. RÉSUMÉ La régulation de l'excrétion rénale de sodium (Na+) joue un rôle principal dans le contrôle à long terme de la pression sanguine, et ses altérations constituent un facteur de risque de l'apparition d'une hypertension artérielle. L'aldosterone, dont la sécrétion dépend de l'apport en sel dans la diète, est une hormone stéroïdienne qui régule la réabsorption de Na+ dans la partie distale du nephron (unité fonctionnelle du rein) en contrôlant la transcription de gènes. Elle peut agir de façon synergistique avec l'hormone peptidique insuline, probablement via l'interaction de leurs voies de signalisation cellulaire. Le but de notre travail comportait deux volets: 1) caractériser in vitro et in vivo le mécanisme d'action du Glucocorticoid Induced Leucine Zipper (GILZ) (un gène induit par l'aldosterone); 2) caractériser in vitro le mécanisme d'action de l'insuline et son interaction avec l'aldosterone. L'ARNm de GILZ, codé par le gène TSC22D3, est induit par l'aldosterone dans la lignée cellulaire de cellules principales du tubule collecteur cortical (CCD) mpkCCDc14, suggérant que GILZ est un médiateur potentiel de la réponse à l'aldosterone. La co-expression in vitro de GILZ et du canal à Na+ sensible à l'amiloride ENaC dans le système d'expression de l'oocyte de Xénope a montré que GILZ n'a pas d'effet sur les courants sodiques véhiculées par ENaC en conditions basales. Une souris knock-out conditionnelle de GILZ est en train d'être produite et permettra l'étude in vivo de son rôle dans le rein et d'autres organes. Des expériences préliminaires ont montré que l'insuline induit un transport transépithelial de Na+ à des concentrations supraphysiologiques. L'insuline et l'insulin-like growth factor 1 (IGF-1) peuvent se lier à leurs récepteurs réciproques avec une affinité 50 à 100 fois moindre qu'à leur propre récepteur. Nous avons donc proposé que l'effet de l'insuline soit médié par le récepteur à l'IGF type 1 (IGF-1R). Dans une nouvelle lignée cellulaire qui présente toutes les caractéristiques des cellules principales du CCD (mCCDc11) nous avons montré que les deux hormones induisent une augmentation physiologiquement significative du transport du Na+ par l'activation des IGF-1 R. Aldosterone et insuline/IGF-1 ont un effet additif sur le transport de Na+, via l'activation de la voie de la PI3-kinase et la phosphorylation de la serum- and glucocorticoid-induced kinase 1 (Sgk1) par l'IGF-1R, dont l'expression est induite par l'aldosterone. Sgk1 intègre les effets de l'insuline et l'aldosterone. Nous proposons que l'IGF-1 joue un rôle dans la modulation physiologique de la balance sodique, tandis que l'insuline régule le transport de Na+ à des concentrations supraphysiologiques. Les deux hormones agissent en se liant à l'IGF-1R et induisent le transport de Na+ en activant la cascade de signalisation PI3-K - PDK1/2 - Sgk1. Nous avons montré pour la première fois que Sgk1 est exprimée et phosphorylée dans des conditions basales dans les cellules principales du CCD, mais le mécanisme qui maintient sa phosphorylation n'est pas connu. Ce nouveau rôle pour l'IGF-1 suggère qu'il pourrait être un gène impliqué de susceptibilité au sel. Aussi, l'IGF-1 stimule le transport rénal de Na+ in vivo. De plus, 35 % des patients atteints d'acromégalie (surproduction d'hormone de croissance et d'IGF-1) sont hypertensifs (prévalence plus élevée que la population normale), et des analyses génétiques suggèrent un lien entre le locus du gène de l'IGF-1 et la pression sanguine. RÉSUMÉ GRAND PUBLIC Nos ancêtres se sont génétiquement adaptés pendant des centaines de millénaires à un environnement pauvre en sel (chlorure de sodium) dans la savane équatoriale, où ils consommaient moins de 0,1 gramme de sel par jour. On a commencé à ajouter du sel aux aliments avec l'apparition de l'agriculture (il y a 5000 à 10000 années), et aujourd'hui une diète omnivore, qui inclut des plats préparés, contient plusieurs fois la quantité de sodium nécessaire pour notre fonction physiologique normale (environ 10 grammes par jour). Le corps garde sa concentration constante dans le sang en s'adaptant à une consommation très variable de sel. Pour ceci, il module son excrétion soit directement, soit en sécrétant des hormones régulatrices. Le rein joue un rôle principal dans cette régulation puisque l'excrétion urinaire de sel change selon la diète et peut aller d'une quantité dérisoire à plus de 36 grammes par jour. L'attention qu'on prête au sel est liée à sa relation avec l'hypertension essentielle. Ainsi, le contrôle rénal de l'excrétion de sodium et d'eau est le principal mécanisme dans la régulation de la pression sanguine, et une ingestion excessive de sel pourrait être l'un des facteurs-clé déclenchant l'apparition d'un phénotype hypertensif. L'hormone aldosterone diminue l'excrétion de sodium par le rein en modulant l'expression de gènes qui pourraient être impliqués dans la sensibilité au sel. Dans une lignée cellulaire de rein l'expression du gène TSC22D3, qui se traduit en la protéine Glucocorticoid Induced Leucine Zipper (GILZ), est fortement induite par l'aldosterone. Ceci suggère que GILZ est un médiateur potentiel de l'effet de l'aldosterone, et pourrait être impliqué dans la sensibilité au sel. Pour analyser la fonction de GILZ dans le rein plusieurs approches ont été utilisées. Par exemple, une souris dans laquelle GILZ est spécifiquement inactivé dans le rein est en train d'être produite et permettra l'étude du rôle de GILZ dans l'organisme. De plus, on a montré que GILZ, en conditions basales, n'a pas d'effet direct sur la protéine transportant le sodium à travers la membrane des cellules, le canal sodique épithélial ENaC. On a aussi essayé de trouver des protéines qui interagissent directement avec GILZ utilisant une technique appelée du « double-hybride dans la levure », mais aucun candidat n'a émergé. Des études ont montré que, à de hautes concentrations, l'insuline peut aussi diminuer l'excrétion de sodium. A ces concentrations, elle peut activer son récepteur spécifique, mais aussi le récepteur d'une autre hormone, l'Insulin-Like Growth Factor 1 (IGF-1). En plus, l'infusion d'IGF-1 augmente la rétention rénale de sodium et d'eau, et des mutations du gène codant pour l'IGF-1 sont liées aux différents niveaux de pression sanguine. On a utilisé une nouvelle lignée cellulaire de rein développée dans notre laboratoire, appelée mCCDc11, pour analyser l'importance relative des deux hormones dans l'induction du transport de sodium. On a montré que les deux hormones induisent une augmentation significative du transport de sodium par l'activation de récepteurs à l'IGF-1 et non du récepteur à l'insuline. On a montré qu'à l'intérieur de la cellule leur activation induit une augmentation du transport sodique par le biais du canal ENaC en modifiant la quantité de phosphates fixés sur la protéine Serumand Glucocorticoid-induced Kinase 1 (Sgk1). On a finalement montré que l'IGF-1 et l'aldosterone ont un effet additif sur le transport de sodium en agissant toutes les deux sur Sgk1, qui intègre leurs effets dans le contrôle du transport de sodium dans le rein.
Resumo:
Abstract The epithelial sodium channel (ENaC) is composed of three homologous subunits α, ß, and γ. This channel is involved in the regulation of sodium balance, which influences the periciliary liquid level in the lung, and blood pressure via the kidney. ENaC expressed in Xenopus laevis oocytes is preferentially and rapidly assembled into heteromeric αßγ complexes. Expression of homomeric α or heteromeric αß and αγ complexes lead to channel expression at the cell surface wíth low activities. Recent studies have demonstrated that α and γ (but not ß) ENaC subunits undergo proteolytic cleavage by endogenous proteases (i.e. furin) correlating with increased channel activity. We therefore assayed the full-length subunits and their cleavage products at the cell surface, as well as in the intracellular pool for all homo- and heteromeric combínations (α, ß, γ, ßγ, αß, αγ, ßγ and αßγ) and measured the corresponding channel activities as amiloride-sensitive sodíum transport (INa). We showed that upon assembly, cleavage of the y ENaC subunit ís responsible for increasing INa. We further demonstrated that in disease states such as cystic fibrosis (CF) where there is disequilibrium in the proteaseprotease inhibitor balance, ENaC is over-activated by the serine protease elastase (NE). We demonstrated that elevated NE concentrations can cleave cell surface expressed γ ENaC (but not α, or ß ENaC), suggesting a causal relationship between γ ENaC cleavage and ENaC activation, taking place at the plasma membrane. In addition, we demonstrated that the serine protease inhibitor (serpin) serpinH1, which is co-expressed with ENaC in the distal nephron is capable of inhibiting the channel by preventing cleavage of the γ ENaC subunit. Aldosterone mediated increases in INa aze known to be inhibted by TGFß. TGFß is also known to increase serpinHl expression. The demonstrated inhibition of γ ENaC cleavage and channel activation by serpinH1 may be responsible for the effect of TGFß on aldosterone stimulation in the distal nephron. In summary, we show that cleavage of the γ subunit, but not the α or ß subunit is linked to channel activation in three seperate contexts. Résumé Le canal épithélial à sodium (ENaC) est constitué de trois sous-unités homologues α, ß, and γ. Ce canal est impliqué dans le maintien de la balance sodique qui influence le niveau du liquide périciliaire du poumon et la pression sanguine via le rein. Dans les ovocytes de Xenopus laevis ENaC est préférentiellement et rapidement exprimé en formant un complexe hétéromérique αßγ. En revanche, l'expression homomérique de α ou hétéromérique des complexes αß et αγ conduit à une expression à la surface cellulaire d'un canal ENaC ne possédant qu'une faible activité. Des études récentes ont mis en évidence que les sous-unités α et γ d'ENaC (mais pas ß) sont coupées par des protéases endogènes (les farines) et que ces clivages augmentent l'activité du canal. Nous avons donc analysé, aussi bien à la surface cellulaire que dans le cytoplasme, les produits des clivages de combinaison homo- et hétéromérique des sous-unités d'ENaC (α, ß, γ, ßγ, αß, αγ, ßγ et αßγ). En parallèle, nous avons étudié l'activité correspondante à ces canaux par la mesure du transport de sodium sensible à l'amiloride (INa). Nous avons montré que lors de l'assemblage des sous-unités d'ENaC, le clivage de γ correspond à l'augmentation de INa. Nous avons également mis en évidence que dans une maladie telle que la fibrose cystique (CF) caractérisée par un déséquilibre de la balance protéase-inhibiteur de protéase, ENaC est suractivé par une sérine protéase nommée élastase (NE). L'augmentation de la concentration de NE clive γ ENaC exprimé à la surface cellulaire (mais pas α, ni ß ENaC) suggérant une causalité entre le clivage d'ENaC et son activation à la membrane plasmique. De plus, nous avons démontré que l'inhibiteur de sérine protéase (serpin) serpinH1, qui est co-exprimé avec ENaC dans le néphron distal, inhibe l'activité du canal en empêchant le clivage de la sous-unité γ ENaC. Il est connu que le INa induit par l'aldostérone peut être inhibé par TGFß. Or TGFß augmente l'expression de serpinH1. L'inhibition du clivage de γ ENaC et de l'activation du canal par la serpinH1 que nous avons mis en évidence pourrait ainsi être responsable de l'effet de TGFß sur la stimulation du courant par l'aldostérone dans le néphron distal. En résumé, nous avons montré que le clivage de la sous-unité γ, mais pas des sous-unités α et ß, est lié à l'activation du canal dans trois contextes distincts. Résumé tout public Le corps humain est composé d'environ 10 000 milliards de cellules et d'approximativement 60% d'eau. Les cellules du corps sont les unités fondamentales de la vie et elles sont dépendantes de certains nutriments et molécules. Ces nutriments et molécules sont dissous dans l'eau qui est présente dans et hors des cellules. Le maintien d'une concentration adéquate - de ces nutriments et de ces molécules dans l'eau à l'intérieur et à l'extérieur des cellules est -..essentiel pour leur survie. L'eau hors des cellules est nommée le fluide extracellulaire et peut être subdivisée en fluide interstitiel, qui se trouve autour des cellules, et en plasma, qui est le fluide des vaisseaux sanguins. Les fluides, les nutriments et les molécules sont constamment échangés entre les cellules, le fluide interstitiel, et le plasma. Le plasma circule dans le système circulatoire afin de distribuer les nutriments et molécules dans tout le corps et afin d'enlever les déchets cellulaires. Le rein joue un rôle essentiel dans la régulation du volume et de la concentration du plasma en éliminant sélectivement les nutriments et les molécules via la formation de l'urine. L'être humain possède deux reins, constitués chacun d'environ 1 million de néphrons. Ces derniers sont responsables de réabsorber et de sécréter sélectivement les nutriments et les molécules. Le canal épithélial à sodium (ENaC) est localisé à la surface cellulaire des néphrons et est responsable de la réabsorption du sodium (Na+). Le Na+ est présent dans quasiment toute la nourriture que nous mangeons et représente, en terme de molécule, 50% du sel de cuisine. Si trop de sodium est consommé, ENaC est inactif, si bien que le Na+ n'est pas réabsorbé et quitte le corps par l'urine. Ce mécanisme permet d'éviter que la concentration plasmatique de Na+ ne devienne trop grande, ce qui résulterait en une augmentation de la pression sanguine. Si trop peu de Na+ est consommé, ENaC réabsorbe le Na+ de l'urine primaire ce qui permet de conserver la concentration de Na+ et de prévenir une diminution de la pression sanguine par une perte de Na+. ENaC est aussi présent dans les cellules des poumons qui sont les organes permettant la respiration. La respiration est aussi essentielle pour la survie des cellules. Les poumons ne doivent pas contenir trop de liquide afin de permettre la respiration, mais en même temps ils ne doivent pas non plus être trop secs. En effet, ceci tuerait les cellules et empêcherait aussi la respiration. ENaC permet de maintenir un niveau d'humidité approprié dans les poumons en absorbant du Na+ ce qui entraîne un mouvement osmotique d'eau. L'absorption de sodium par ENaC ~ est augmentée par les protéases (in vitro et ex vivo). Les protéases sont des molécules qui peuvent couper d'autres molécules à des endroits précis. Nous avons démonté que certaines protéases augmentent l'absorption de Na+ en coupant ENaC à des endroits spécifiques. L'inhibition de ces protéases diminue le transport de Na+ et empêche le clivage d'ENaC. Dans certaines maladies telle que la mucoviscidose, des protéases sont suractivées et augmentent l'activité d'ENaC de manière inappropriée conduisant à une trop forte absorption de Na+ et à un déséquilibre de la muqueuse des poumons. Cette étude est donc particulièrement importante dans le cadre de la recherche thérapeutique de ce genre de maladie.
Resumo:
The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.
Resumo:
The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.
Resumo:
BACKGROUND: Pharmacological interruption of the renin-angiotensin system focuses on optimization of blockade. As a measure of intrarenal renin activity, we have examined renal plasma flow (RPF) responses in a standardized protocol. Compared with responses with angiotensin-converting enzyme inhibition (rise in RPF approximately 95 mL x min(-1) x 1.73 m(-2)), greater renal vasodilation with angiotensin receptor blockers (approximately 145 mL x min(-1) x 1.73 m(-2)) suggested more effective blockade. We predicted that blockade with the direct oral renin inhibitor aliskiren would produce renal vascular responses exceeding those induced by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS AND RESULTS: Twenty healthy normotensive subjects were studied on a low-sodium (10 mmol/d) diet, receiving separate escalating doses of aliskiren. Six additional subjects received captopril 25 mg as a low-sodium comparison and also received aliskiren on a high-sodium (200 mmol/d) diet. RPF was measured by clearance of para-aminohippurate. Aliskiren induced a remarkable dose-related renal vasodilation in low-sodium balance. The RPF response was maximal at the 600-mg dose (197+/-27 mL x min(-1) x 1.73 m(-2)) and exceeded responses to captopril (92+/-20 mL x min(-1) x 1.73 m(-2); P<0.01). Furthermore, significant residual vasodilation was observed 48 hours after each dose (P<0.01). The RPF response on a high-sodium diet was also higher than expected (47+/-17 mL x min(-1) x 1.73 m(-2)). Plasma renin activity and angiotensin levels were reduced in a dose-related manner. As another functional index of the effect of aliskiren, we found significant natriuresis on both diets. CONCLUSIONS: Renal vasodilation in healthy people with the potent renin inhibitor aliskiren exceeded responses seen previously with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. The effects were longer lasting and were associated with significant natriuresis. These results indicate that aliskiren may provide more complete and thus more effective blockade of the renin-angiotensin system.