129 resultados para STRAND SCISSION
em Université de Lausanne, Switzerland
Resumo:
We demonstrate that the step of DNA strand exchange during RecA-mediated recombination reaction can occur equally efficiently in the presence or absence of ATP hydrolysis. The polarity of strand exchange is the same when instead of ATP its non-hydrolyzable analog adenosine-5'-O-(3-thiotriphosphate) is used. We show that the ATP dependence of recombination reaction is limited to the post-exchange stages of the reactions. The low DNA affinity state of RecA protomers, induced after ATP hydrolysis, is necessary for the dissociation of RecA-DNA complexes at the end of the reaction. This dissociation of RecA from DNA is necessary for the release of recombinant DNA molecules from the complexes formed with RecA and for the recycling of RecA protomers for another round of the recombination reaction.
Resumo:
Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.
Resumo:
Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.
Resumo:
Review of the book: The third man of the double Helix by Maurice Wilkins. 10.1038/sj.embor.7400062
Resumo:
We systematically investigated the effect of heterology on RecA-mediated strand exchange between double-stranded linear and single-stranded circular DNA. Strand exchange took place through heterologies of up to 150-200 base pairs when the insertion was at the proximal (initiating) end of the duplex DNA but was completely blocked by an insert of only 22 base pairs placed at the distal end of the duplex. In the case of medial heterology created by insertion either in the duplex or the single-stranded DNA, the ability of RecA to exchange strands decreased as the heterology was shifted toward the distal end of the duplex. These results suggest that two different strand exchange mechanisms operate in the proximal and distal portions of the duplex substrate.
Resumo:
The role of ATP hydrolysis during the RecA-mediated recombination reaction is addressed in this paper. Recent studies indicated that the RecA-promoted DNA strand exchange between completely homologous double- and single-stranded DNA can be very efficient in the absence of ATP hydrolysis. In this work we demonstrate that the energy derived from the ATP hydrolysis is strictly needed to drive the DNA strand exchange through the regions where the interacting DNA molecules are not in a homologous register. Therefore, in addition to the role of the ATP hydrolysis in promoting the dissociation of RecA from the products of the recombination reaction, as described earlier, ATP hydrolysis also plays a crucial role in the actual process of strand exchange, provided that the lack of homologous register obstructs the process of branch migration.
Resumo:
RecA protein in bacteria and its eukaryotic homolog Rad51 protein are responsible for initiation of strand exchange between homologous DNA molecules. This process is crucial for homologous recombination, the repair of certain types of DNA damage and for the reinitiation of DNA replication on collapsed replication forks. We show here, using two different types of in vitro assays, that in the absence of ATP hydrolysis RecA-mediated strand exchange traverses small substitutional heterologies between the interacting DNAs, whereas small deletions or insertions block the ongoing strand exchange. We discuss evolutionary implications of RecA selectivity against insertions and deletions and propose a molecular mechanism by which RecA can exert this selectivity.
Resumo:
Double-strand breaks (DSBs) in DNA are caused by ionizing radiation. These chromosomal breaks can kill the cell unless repaired efficiently, and inefficient or inappropriate repair can lead to mutation, gene translocation and cancer. Two proteins that participate in the repair of DSBs are Rad52 and Ku: in lower eukaryotes such as yeast, DSBs are repaired by Rad52-dependent homologous recombination, whereas vertebrates repair DSBs primarily by Ku-dependent non-homologous end-joining. The contribution of homologous recombination to vertebrate DSB repair, however, is important. Biochemical studies indicate that Ku binds to DNA ends and facilitates end-joining. Here we show that human Rad52, like Ku, binds directly to DSBs, protects them from exonuclease attack and facilitates end-to-end interactions. A model for repair is proposed in which either Ku or Rad52 binds the DSB. Ku directs DSBs into the non-homologous end-joining repair pathway, whereas Rad52 initiates repair by homologous recombination. Ku and Rad52, therefore, direct entry into alternative pathways for the repair of DNA breaks.
Resumo:
The Saccharomyces cerevisiae Dmc1 and Tid1 proteins are required for the pairing of homologous chromosomes during meiotic recombination. This pairing is the precursor to the formation of crossovers between homologs, an event that is necessary for the accurate segregation of chromosomes. Failure to form crossovers can have serious consequences and may lead to chromosomal imbalance. Dmc1, a meiosis-specific paralog of Rad51, mediates the pairing of homologous chromosomes. Tid1, a Rad54 paralog, although not meiosis-specific, interacts with Dmc1 and promotes crossover formation between homologs. In this study, we show that purified Dmc1 and Tid1 interact physically and functionally. Dmc1 forms stable nucleoprotein filaments that can mediate DNA strand invasion. Tid1 stimulates Dmc1-mediated formation of joint molecules. Under conditions optimal for Dmc1 reactions, Rad51 is specifically stimulated by Rad54, establishing that Dmc1-Tid1 and Rad51-Rad54 function as specific pairs. Physical interaction studies show that specificity in function is not dictated by direct interactions between the proteins. Our data are consistent with the hypothesis that Rad51-Rad54 function together to promote intersister DNA strand exchange, whereas Dmc1-Tid1 tilt the bias toward interhomolog DNA strand exchange.
Resumo:
The RNA genome of the human T-cell leukemia virus type 1 (HTLV-1) codes for proteins involved in infectivity, replication, and transformation. We report in this study the characterization of a novel viral protein encoded by the complementary strand of the HTLV-1 RNA genome. This protein, designated HBZ (for HTLV-1 bZIP factor), contains a N-terminal transcriptional activation domain and a leucine zipper motif in its C terminus. We show here that HBZ is able to interact with the bZIP transcription factor CREB-2 (also called ATF-4), known to activate the HTLV-1 transcription by recruiting the viral trans-activator Tax on the Tax-responsive elements (TxREs). However, we demonstrate that the HBZ/CREB-2 heterodimers are no more able to bind to the TxRE and cyclic AMP response element sites. Taking these findings together, the functional inactivation of CREB-2 by HBZ is suggested to contribute to regulation of the HTLV-1 transcription. Moreover, the characterization of a minus-strand gene protein encoded by HTLV-1 has never been reported until now.
Resumo:
Using numerical simulations of pairs of long polymeric chains confined in microscopic cylinders, we investigate consequences of double-strand DNA breaks occurring in independent topological domains, such as these constituting bacterial chromosomes. Our simulations show a transition between segregated and mixed state upon linearization of one of the modelled topological domains. Our results explain how chromosomal organization into topological domains can fulfil two opposite conditions: (i) effectively repulse various loops from each other thus promoting chromosome separation and (ii) permit local DNA intermingling when one or more loops are broken and need to be repaired in a process that requires homology search between broken ends and their homologous sequences in closely positioned sister chromatid.
Resumo:
The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.
Resumo:
Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 phase within sites containing single-stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring-like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11-processed DNA double-strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.