2 resultados para Right to Water

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: In extreme situations, such as hyperacute rejection of heart transplant or major bleeding per-operating complications, an urgent heart explantation might be the only means of survival. The aim of this experimental study was to improve the surgical technique and the hemodynamics of an Extracorporeal Membrane Oxygenation (ECMO) support through a peripheral vascular access in an acardia model. Methods: An ECMO support was established in 7 bovine experiments (59±6.1 kg) by the transjugular insertion to the caval axis of a self-expanded cannula, with return through a carotid artery. After baseline measurements of pump flow and arterial and central venous pressure, ventricular fibrillation was induced (B), the great arteries were clamped, the heart was excised and right and left atria remnants, containing the pulmonary veins, were sutured together leaving an atrial septal defect (ASD) over the cannula in the caval axis. Measurements were taken with the pulmonary artery (PA) clamped (C) and anastomosed with the caval axis (D). Regular arterial and central venous blood gases tests were performed. The ANOVA test for repeated measures was used to test the null hypothesis and a Bonferroni t method for assessing the significance in the between groups pairwise comparison of mean pump flow. Results: Initial pump flow (A) was 4.3±0.6 L/min dropping to 2.8±0.7 L/min (P B-A= 0.003) 10 minutes after induction of ventricular fibrillation (B). After cardiectomy, with the pulmonary artery clamped (C) it augmented not significantly to 3.5±0.8 L/min (P C-B= 0.33, P C-A= 0.029). Finally, PA anastomosis to the caval axis was followed by an almost to baseline pump flow augmentation (4.1±0.7 L/min, P D-B= 0.009, P D-C= 0.006, P D-A= 0.597), permitting a full ECMO support in acardia by a peripheral vascular access. Conclusions: ECMO support in acardia is feasible, providing new opportunities in situations where heart must urgently be explanted, as in hyperacute rejection of heart transplant. Adequate drainage of pulmonary circulation is pivotal in order to avoid pulmonary congestion and loss of volume from the normal right to left shunt of bronchial vessels. Furthermore, the PA anastomosis to the caval axis not only improves pump flow but it also permits an ECMO support by a peripheral vascular access and the closure of the chest.