236 resultados para Resistance Peasant
em Université de Lausanne, Switzerland
Resumo:
Background. Accurate quantification of the prevalence of human immunodeficiency virus type 1 (HIV-1) drug resistance in patients who are receiving antiretroviral therapy (ART) is difficult, and results from previous studies vary. We attempted to assess the prevalence and dynamics of resistance in a highly representative patient cohort from Switzerland. Methods. On the basis of genotypic resistance test results and clinical data, we grouped patients according to their risk of harboring resistant viruses. Estimates of resistance prevalence were calculated on the basis of either the proportion of individuals with a virologic failure or confirmed drug resistance (lower estimate) or the frequency-weighted average of risk group-specific probabilities for the presence of drug resistance mutations (upper estimate). Results. Lower and upper estimates of drug resistance prevalence in 8064 ART-exposed patients were 50% and 57% in 1999 and 37% and 45% in 2007, respectively. This decrease was driven by 2 mechanisms: loss to follow-up or death of high-risk patients exposed to mono- or dual-nucleoside reverse-transcriptase inhibitor therapy (lower estimates range from 72% to 75%) and continued enrollment of low-risk patients who were taking combination ART containing boosted protease inhibitors or nonnucleoside reverse-transcriptase inhibitors as first-line therapy (lower estimates range from 7% to 12%). A subset of 4184 participants (52%) had 1 study visit per year during 2002-2007. In this subset, lower and upper estimates increased from 45% to 49% and from 52% to 55%, respectively. Yearly increases in prevalence were becoming smaller in later years. Conclusions. Contrary to earlier predictions, in situations of free access to drugs, close monitoring, and rapid introduction of new potent therapies, the emergence of drug-resistant viruses can be minimized at the population level. Moreover, this study demonstrates the necessity of interpreting time trends in the context of evolving cohort populations.
Resumo:
The hypothesis that extravagant ornaments signal parasite resistance has received support in several species for ornamented males but more rarely for ornamented females. However, recent theories have proposed that females should often be under sexual selection, and therefore females may signal the heritable capacity to resist parasites. We investigated this hypothesis in the socially monogamous barn owl, Tyto alba, in which females exhibit on average more and larger black spots on the plumage than males, and in which males were suggested to choose a mate with respect to female plumage spottiness. We hypothesized that the proportion of the plumage surface covered by black spots signals parasite resistance. In line with this hypothesis, we found that the ectoparasitic fly, Carnus hemapterus, was less abundant on young raised by more heavily spotted females and those flies were less fecund. In an experiment, where entire clutches were cross-fostered between nests, we found that the fecundity of the flies collected on nestlings was negatively correlated with the genetic mother's plumage spottiness. These results suggest that the ability to resist parasites covaries with the extent of female plumage spottiness. Among females collected dead along roads, those with a lot of black spots had a small bursa of Fabricius. Given that parasites bigger the development of this immune organ, this observation further suggests that more spotted females are usually less parasitized. The same analyses performed on male plumage spottiness all provided non-significant results. To our knowledge, this study is the first one showing that a heritable secondary sexual characteristics displayed by females reflects parasite resistance.
Resumo:
BACKGROUND: The aim of this study was to evaluate the efficacy and tolerability of fulvestrant, an estrogen receptor antagonist, in postmenopausal women with hormone-responsive tumors progressing after aromatase inhibitor (AI) treatment. PATIENTS AND METHODS: This is a phase II, open, multicenter, noncomparative study. Two patient groups were prospectively considered: group A (n=70) with AI-responsive disease and group B (n=20) with AI-resistant disease. Fulvestrant 250 mg was administered as intramuscular injection every 28 (+/-3) days. RESULTS: All patients were pretreated with AI and 84% also with tamoxifen or toremifene; 67% had bone metastases and 45% liver metastases. Fulvestrant administration was well tolerated and yielded a clinical benefit (CB; defined as objective response or stable disease [SD] for >or=24 weeks) in 28% (90% confidence interval [CI] 19% to 39%) of patients in group A and 37% (90% CI 19% to 58%) of patients in group B. Median time to progression (TTP) was 3.6 (95% CI 3.0 to 4.8) months in group A and 3.4 (95% CI 2.5 to 6.7) months in group B. CONCLUSIONS: Overall, 30% of patients who had progressed following prior AI treatment gained CB with fulvestrant, thereby delaying indication to start chemotherapy. Prior response to an AI did not appear to be predictive for benefit with fulvestrant.
Resumo:
We describe a calorimetric assay for detection of voriconazole-resistant Aspergillus fumigatus within 8 h. Among 27 genetically distinct strains, all 21 resistant and all 6 susceptible strains were correctly identified by measurement of fungal heat production in the presence of voriconazole. This proof-of-concept study demonstrates the potential of microcalorimetry for rapid detection of azole resistance in A. fumigatus.
Resumo:
To determine viral subtypes and resistance mutations to antiretroviral treatment (ART) in untreated HIV-1 acutely infected subjects from Southwest Switzerland. Clinical samples were obtained from the HIV primary infection cohort from Lausanne. Briefly, pol gene was amplified by nested PCR and sequenced to generate a 1?kb sequence spanning protease and reverse transcriptase key protein regions. Nucleotide sequences were used to assess viral genotype and ART resistance mutations. Blood specimens and medical information were obtained from 30 patients. Main viral subtypes corresponded to clade B, CRF02_AG, and F1. Resistant mutations to PIs consisted of L10V and accessory mutations 16E and 60E present in all F1 clades. The NNRTI major resistant mutation 103N was detected in all F1 viruses and in other 2 clades. Additionally, we identified F1 sequences from other 6 HIV infected and untreated individuals from Southwest Switzerland, harboring nucleotide motifs and resistance mutations to ART as observed in the F1 strains from the cohort. These data reveal a high transmission rate (16.6%) for NNRTI resistant mutation 103N in a cohort of HIV acute infection. Three of the 5 resistant strains were F1 clades closely related to other F1 isolates from HIV-1 infection untreated patients also coming from Southwest Switzerland. Overall, we provide strong evidence towards an HIV-1 resistant transmission network in Southwest Switzerland. These findings have relevant implications for the local molecular mapping of HIV-1 and future ART surveillance studies in the region.
Resumo:
Our aim was to critically evaluate the relations among smoking, body weight, body fat distribution, and insulin resistance as reported in the literature. In the short term, nicotine increases energy expenditure and could reduce appetite, which may explain why smokers tend to have lower body weight than do nonsmokers and why smoking cessation is frequently followed by weight gain. In contrast, heavy smokers tend to have greater body weight than do light smokers or nonsmokers, which likely reflects a clustering of risky behaviors (eg, low degree of physical activity, poor diet, and smoking) that is conducive to weight gain. Other factors, such as weight cycling, could also be involved. In addition, smoking increases insulin resistance and is associated with central fat accumulation. As a result, smoking increases the risk of metabolic syndrome and diabetes, and these factors increase risk of cardiovascular disease. In the context of the worldwide obesity epidemic and a high prevalence of smoking, the greater risk of (central) obesity and insulin resistance among smokers is a matter of major concern
Resumo:
The klotho gene may be involved in the aging process. Klotho is a coactivator of FGF23, a regulator of phosphate and vitamin D metabolism. It has also been reported to be downregulated in insulin resistance syndromes and paradoxically to directly inhibit IGF-1 and insulin signaling. Our aim was to study klotho's regulation and effects on insulin and IGF-1 signaling to unravel this paradox. We studied klotho tissue distribution and expression by quantitative real-time polymerase chain reaction and Western blotting in obese Zucker rats and high-fat fed Wistar rats, two models of insulin resistance. Klotho was expressed in kidneys but at much lower levels (<1.5%) in liver, muscle, brain, and adipose tissue. There were no significant differences between insulin resistant and control animals. We next produced human recombinant soluble klotho protein (KLEC) and studied its effects on insulin and IGF-1 signaling in cultured cells. In HEK293 cells, FGF23 signaling (judged by FRS2-alpha and ERK1/2 phosphorylation) was activated by conditioned media from KLEC-producing cells (CM-KLEC); however, IGF-1 signaling was unaffected. CM-KLEC did not inhibit IGF-1 and insulin signaling in L6 and Hep G2 cells, as judged by Akt and ERK1/2 phosphorylation. We conclude that decreased klotho expression is not a general feature of rodent models of insulin resistance. Further, the soluble klotho protein does not inhibit IGF-1 and/or insulin signaling in HEK293, L6, and HepG2 cells, arguing against a direct role of klotho in insulin signaling. However, the hypothesis that klotho indirectly regulates insulin sensitivity via FGF23 activation remains to be investigated.
Resumo:
A metabolic hypothesis is presented for insulin resistance in obesity, in the presence or absence of Type 2 (non-insulin-dependent) diabetes mellitus. It is based on physiological mechanisms including a series of negative feed-back mechanisms, with the inhibition of the function of the glycogen cycle in skeletal muscle as a consequence of decreased glucose utilization resulting from increased lipid oxidation in the obese. It considers the inhibition of glycogen synthase activity together with inhibition of glucose storage and impaired glucose tolerance. The prolonged duration of increased lipid oxidation, considered as the initial cause, may lead to Type 2 diabetes. This hypothesis is compatible with others based on the inhibition of insulin receptor kinase and of glucose transporter activities.
Resumo:
Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis-à-vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients.
Resumo:
A recent study with 69 Japanese liver transplants treated with tacrolimus found that the MDR13435 C >T polymorphism, but not the MDR12677 G >T polymorphism, was associated with differences in the intestinal expression level of CYP3A4 mRNA. In the present study, over 6 h, we measured the kinetics of a 75 microg oral dose of midazolam, a CYP3A substrate, in 21 healthy subjects genotyped for the MDR13435 C >T and 2677 G >T polymorphism. No statistically significant differences were found in the calculated pharmacokinetic parameters between the three 3435 C >T genotypes (TT, CT and CC group, respectively: Cmax (mean +/- SD: 0.30 +/- 0.08 ng/ml, 0.31 +/- 0.09 ng/ml and 0.31 +/- 0.11 ng/ml; Apparent clearance: 122 +/- 29 l/h, 156 +/- 92 l/h and 111 +/- 35 l/h; t1/2: 1.9 +/- 1.1 h, 1.6 +/- 0.90 h and 1.7 +/- 0.7 h). In addition, the 30-min 1'OH midazolam to midazolam ratio, a marker of CYP3A activity, determined in 74 HIV-positive patients before the introduction of antiretroviral treatment, was not significantly different between the three 3435 C >T genotypes (mean ratio +/- SD: 3.65 +/- 2.24, 4.22 +/- 3.49 and 4.24 +/- 2.03, in the TT, CT and CC groups, respectively). Similarly, no association was found between the MDR12677 G >T polymorphism and CYP3A activity in the healthy subjects or in the HIV-positive patients. The existence of a strong association between the activity of CYP3A and MDR13435 C >T and 2677 G >T polymorphisms appears unlikely, at least in Caucasian populations and/or in the absence of specific environmental factors.
Resumo:
Antifungal resistance of Candida species is a clinical problem in the management of diseases caused by these pathogens. In this study we identified from a collection of 423 clinical samples taken from Tunisian hospitals two clinical Candida species (Candida albicans JEY355 and Candida tropicalis JEY162) with decreased susceptibility to azoles and polyenes. For JEY355, the fluconazole (FLC) MIC was 8 μg/ml. Azole resistance in C. albicans JEY355 was mainly caused by overexpression of a multidrug efflux pump of the major facilitator superfamily, Mdr1. The regulator of Mdr1, MRR1, contained a yet-unknown gain-of-function mutation (V877F) causing MDR1 overexpression. The C. tropicalis JEY162 isolate demonstrated cross-resistance between FLC (MIC > 128 μg/ml), voriconazole (MIC > 16 μg/ml), and amphotericin B (MIC > 32 μg/ml). Sterol analysis using gas chromatography-mass spectrometry revealed that ergosterol was undetectable in JEY162 and that it accumulated 14α-methyl fecosterol, thus indicating a perturbation in the function of at least two main ergosterol biosynthesis proteins (Erg11 and Erg3). Sequence analyses of C. tropicalis ERG11 (CtERG11) and CtERG3 from JEY162 revealed a deletion of 132 nucleotides and a single amino acid substitution (S258F), respectively. These two alleles were demonstrated to be nonfunctional and thus are consistent with previous studies showing that ERG11 mutants can only survive in combination with other ERG3 mutations. CtERG3 and CtERG11 wild-type alleles were replaced by the defective genes in a wild-type C. tropicalis strain, resulting in a drug resistance phenotype identical to that of JEY162. This genetic evidence demonstrated that CtERG3 and CtERG11 mutations participated in drug resistance. During reconstitution of the drug resistance in C. tropicalis, a strain was obtained harboring only defective Cterg11 allele and containing as a major sterol the toxic metabolite 14α-methyl-ergosta-8,24(28)-dien-3α,6β-diol, suggesting that ERG3 was still functional. This strain therefore challenged the current belief that ERG11 mutations cannot be viable unless accompanied by compensatory mutations. In conclusion, this study, in addition to identifying a novel MRR1 mutation in C. albicans, constitutes the first report on a clinical C. tropicalis with defective activity of sterol 14α-demethylase and sterol Δ(5,6)-desaturase leading to azole-polyene cross-resistance.
Resumo:
Obesity is associated with skeletal muscle insulin resistance, which is a crucial step in the development of type 2 diabetes. Among the mechanisms by which obesity may lead to insulin resistance, lipotoxicity is one of the hypotheses being explored; others include inflammation or the oxidative stress hypotheses. This review focuses on the role of diacylglycerols (DAG), a family of lipid metabolites implicated in the pathogenesis of lipotoxicity and insulin resistance. While recent studies report contradictory results in humans with regard to the importance of DAG-induced insulin resistance in skeletal muscle, other current literature highlight a potential role for DAG as signalling molecules. This review will discuss possible hypotheses explaining these contradictory results and the need to explore further the role of DAG in human metabolism.
Resumo:
OBJECTIVES: The use of tenofovir is highly associated with the emergence of mutation K65R, which confers broad resistance to nucleoside/nucleotide analogue reverse transcriptase inhibitors (NRTIs), especially when tenofovir is combined with other NRTIs also selecting for K65R. Although recent HIV-1 treatment guidelines discouraging these combinations resulted in reduced K65R selection with tenofovir, updated information on the impact of currently recommended regimens on the population selection rate of K65R is presently lacking. METHODS: In this study, we evaluated changes over time in the selection rate of resistance mutation K65R in a large population of 2736 HIV-1-infected patients failing combination antiretroviral treatment between 2002 and 2010. RESULTS: The K65R resistance mutation was detected in 144 patients, a prevalence of 5.3%. A large majority of observed K65R cases were explained by the use of tenofovir, reflecting its wide use in clinical practice. However, changing patterns over time in NRTIs accompanying tenofovir resulted in a persistent decreasing probability of K65R selection by tenofovir-based therapy. The currently recommended NRTI combination tenofovir/emtricitabine was associated with a low probability of K65R emergence. For any given dual NRTI combination including tenofovir, higher selection rates of K65R were consistently observed with a non-nucleoside reverse transcriptase inhibitor than with a protease inhibitor as the third agent. DISCUSSION: Our finding of a stable time trend of K65R despite elevated use of tenofovir illustrates increased potency of current HIV-1 therapy including tenofovir.
Resumo:
In Pseudomonas fluorescens biocontrol strain CHA0, the two-component system GacS/GacA positively controls the synthesis of extracellular products such as hydrogen cyanide, protease, and 2,4-diacetylphloroglucinol, by upregulating the transcription of small regulatory RNAs which relieve RsmA-mediated translational repression of target genes. The expression of the stress sigma factor sigmaS (RpoS) was controlled positively by GacA and negatively by RsmA. By comparison with the wild-type CHA0, both a gacS and an rpoS null mutant were more sensitive to H2O2 in stationary phase. Overexpression of rpoS or of rsmZ, encoding a small RNA antagonistic to RsmA, restored peroxide resistance to a gacS mutant. By contrast, the rpoS mutant showed a slight increase in the expression of the hcnA (HCN synthase subunit) gene and of the aprA (major exoprotease) gene, whereas overexpression of sigmaS strongly reduced the expression of these genes. These results suggest that in strain CHA0, regulation of exoproduct synthesis does not involve sigmaS as an intermediate in the Gac/Rsm signal transduction pathway whereas sigmaS participates in Gac/Rsm-mediated resistance to oxidative stress.